Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The RAD9–RAD1–HUS1 (9.1.1) complex interacts with WRN and is crucial to regulate its response to replication fork stalling

Abstract

The WRN protein belongs to the RecQ family of DNA helicases and is implicated in replication fork restart, but how its function is regulated remains unknown. We show that WRN interacts with the 9.1.1 complex, one of the central factors of the replication checkpoint. This interaction is mediated by the binding of the RAD1 subunit to the N-terminal region of WRN and is instrumental for WRN relocalization in nuclear foci and its phosphorylation in response to replication arrest. We also find that ATR-dependent WRN phosphorylation depends on TopBP1, which is recruited by the 9.1.1 complex in response to replication arrest. Finally, we provide evidence for a cooperation between WRN and 9.1.1 complex in preventing accumulation of DNA breakage and maintaining genome integrity at naturally occurring replication fork stalling sites. Taken together, our data unveil a novel functional interplay between WRN helicase and the replication checkpoint, contributing to shed light into the molecular mechanism underlying the response to replication fork arrest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ammazzalorso F, Pirzio LM, Bignami M, Franchitto A, Pichierri P . (2010). ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery. EMBO J 29: 3156–3169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao S, Lu T, Wang X, Zheng H, Wang LE, Wei Q et al. (2004). Disruption of the Rad9/Rad1/Hus1 (9-1-1) complex leads to checkpoint signaling and replication defects. Oncogene 23: 5586–5593.

    Article  CAS  PubMed  Google Scholar 

  • Blander G, Zalle N, Daniely Y, Taplick J, Gray MD, Oren M . (2002). DNA damage-induced translocation of the Werner helicase is regulated by acetylation. J Biol Chem 277: 50934–50940.

    Article  CAS  PubMed  Google Scholar 

  • Brosh Jr RM, Waheed J, Sommers JA . (2002). Biochemical characterization of the DNA substrate specificity of Werner syndrome helicase. J Biol Chem 277: 23236–23245.

    Article  CAS  PubMed  Google Scholar 

  • Cheng WH, von Kobbe C, Opresko PL, Fields KM, Ren J, Kufe D et al. (2003). Werner syndrome protein phosphorylation by abl tyrosine kinase regulates its activity and distribution. Mol Cell Biol 23: 6385–6395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng WH, von Kobbe C, Opresko PL, Arthur LM, Komatsu K, Seidman MM et al. (2004). Linkage between Werner syndrome protein and the Mre11 complex via Nbs1. J Biol Chem 279: 21169–21176.

    Article  CAS  PubMed  Google Scholar 

  • Cheng WH, Muftuoglu M, Bohr VA . (2007). Werner syndrome protein: functions in the response to DNA damage and replication stress in S-phase. Exp Gerontol 42: 871–878.

    Article  CAS  PubMed  Google Scholar 

  • Cimprich KA, Cortez D . (2008). ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9: 616–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constantinou A, Tarsounas M, Karow JK, Brosh RM, Bohr VA, Hickson ID et al. (2000). Werner's syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep 1: 80–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delacroix S, Wagner JM, Kobayashi M, Yamamoto K, Karnitz LM . (2007). The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev 21: 1472–1477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dore AS, Kilkenny ML, Rzechorzek NJ, Pearl LH . (2009). Crystal structure of the rad9-rad1-hus1 DNA damage checkpoint complex--implications for clamp loading and regulation. Mol Cell 34: 735–745.

    Article  CAS  PubMed  Google Scholar 

  • Franchitto A, Pichierri P . (2004). Werner syndrome protein and the MRE11 complex are involved in a common pathway of replication fork recovery. Cell Cycle 3: 1331–1339.

    Article  CAS  PubMed  Google Scholar 

  • Franchitto A, Pirzio LM, Prosperi E, Sapora O, Bignami M, Pichierri P . (2008). Replication fork stalling in WRN-deficient cells is overcome by prompt activation of a MUS81-dependent pathway. J Cell Biol 183: 241–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuya K, Poitelea M, Guo L, Caspari T, Carr AM . (2004). Chk1 activation requires Rad9 S/TQ-site phosphorylation to promote association with C-terminal BRCT domains of Rad4TOPBP1. Genes Dev 18: 1154–1164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glover TW, Arlt MF, Casper AM, Durkin SG . (2005). Mechanisms of common fragile site instability. Hum Mol Genet 14 (Spec No. 2): R197–R205.

    Article  CAS  PubMed  Google Scholar 

  • Guan X, Bai H, Shi G, Theriot CA, Hazra TK, Mitra S et al. (2007). The human checkpoint sensor Rad9-Rad1-Hus1 interacts with and stimulates NEIL1 glycosylase. Nucleic Acids Res 35: 2463–2472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halazonetis TD, Gorgoulis VG, Bartek J . (2008). An oncogene-induced DNA damage model for cancer development. Science 319: 1352–1355.

    Article  CAS  PubMed  Google Scholar 

  • Harrigan JA, Wilson 3rd DM, Prasad R, Opresko PL, Beck G, May A et al. (2006). The Werner syndrome protein operates in base excision repair and cooperates with DNA polymerase beta. Nucleic Acids Res 34: 745–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins KM, Auerbach W, Wang XY, Hande MP, Hang H, Wolgemuth DJ et al. (2004). Deletion of mouse rad9 causes abnormal cellular responses to DNA damage, genomic instability, and embryonic lethality. Mol Cell Biol 24: 7235–7248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kai M, Wang TS . (2003). Checkpoint activation regulates mutagenic translesion synthesis. Genes Dev 17: 64–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumagai A, Lee J, Yoo HY, Dunphy WG . (2006). TopBP1 activates the ATR-ATRIP complex. Cell 124: 943–955.

    Article  CAS  PubMed  Google Scholar 

  • Lan L, Nakajima S, Komatsu K, Nussenzweig A, Shimamoto A, Oshima J et al. (2005). Accumulation of Werner protein at DNA double-strand breaks in human cells. J Cell Sci 118: 4153–4162.

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kumagai A, Dunphy WG . (2007). The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J Biol Chem 282: 28036–28044.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Bekker-Jensen S, Mailand N, Lukas C, Bartek J, Lukas J . (2006). Claspin operates downstream of TopBP1 to direct ATR signaling towards Chk1 activation. Mol Cell Biol 26: 6056–6064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machwe A, Xiao L, Groden J, Orren DK . (2006). The Werner and Bloom syndrome proteins catalyze regression of a model replication fork. Biochemistry 45: 13939–13946.

    Article  CAS  PubMed  Google Scholar 

  • Martin GM, Oshima J . (2000). Lessons from human progeroid syndromes. Nature 408: 263–266.

    Article  CAS  PubMed  Google Scholar 

  • Mordes DA, Glick GG, Zhao R, Cortez D . (2008). TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev 22: 1478–1489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muftuoglu M, Kusumoto R, Speina E, Beck G, Cheng WH, Bohr VA . (2008a). Acetylation regulates WRN catalytic activities and affects base excision DNA repair. PLoS ONE 3: e1918.

    Article  PubMed  PubMed Central  Google Scholar 

  • Muftuoglu M, Oshima J, von Kobbe C, Cheng WH, Leistritz DF, Bohr VA . (2008b). The clinical characteristics of Werner syndrome: molecular and biochemical diagnosis. Hum Genet 124: 369–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parrilla-Castellar ER, Arlander SJ, Karnitz L . (2004). Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst) 3: 1009–1014.

    Article  CAS  Google Scholar 

  • Perry JJ, Yannone SM, Holden LG, Hitomi C, Asaithamby A, Han S et al. (2006). WRN exonuclease structure and molecular mechanism imply an editing role in DNA end processing. Nat Struct Mol Biol 13: 414–422.

    Article  CAS  PubMed  Google Scholar 

  • Pichierri P, Rosselli F, Franchitto A . (2003). Werner's syndrome protein is phosphorylated in an ATR/ATM-dependent manner following replication arrest and DNA damage induced during the S phase of the cell cycle. Oncogene 22: 1491–1500.

    Article  CAS  PubMed  Google Scholar 

  • Pichierri P, Franchitto A, Rosselli F . (2004). BLM and the FANC proteins collaborate in a common pathway in response to stalled replication forks. EMBO J 23: 3154–3163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichierri P . (2007). Interplay between wrn and the checkpoint in s-phase. Ital J Biochem 56: 130–140.

    CAS  PubMed  Google Scholar 

  • Pirzio LM, Pichierri P, Bignami M, Franchitto A . (2008). Werner syndrome helicase activity is essential in maintaining fragile site stability. J Cell Biol 180: 305–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Lopez AM, Jackson DA, Nehlin JO, Iborra F, Warren AV, Cox LS . (2003). Characterisation of the interaction between WRN, the helicase/exonuclease defective in progeroid Werner's syndrome, and an essential replication factor, PCNA. Mech Ageing Dev 124: 167–174.

    Article  CAS  PubMed  Google Scholar 

  • Roos-Mattjus P, Hopkins KM, Oestreich AJ, Vroman BT, Johnson KL, Naylor S et al. (2003). Phosphorylation of human Rad9 is required for genotoxin-activated checkpoint signaling. J Biol Chem 278: 24428–24437.

    Article  CAS  PubMed  Google Scholar 

  • Scappaticci S, Cerimele D, Fraccaro M . (1982). Clonal structural chromosomal rearrangements in primary fibroblast cultures and in lymphocytes of patients with Werner's syndrome. Hum Genet 62: 16–24.

    Article  CAS  PubMed  Google Scholar 

  • Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M . (2011). Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145: 529–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen JC, Gray MD, Oshima J, Loeb LA . (1998). Characterization of Werner syndrome protein DNA helicase activity: directionality, substrate dependence and stimulation by replication protein A. Nucleic Acids Res 26: 2879–2885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidorova JM . (2008). Roles of the Werner syndrome RecQ helicase in DNA replication. DNA Repair (Amst) 7: 1776–1786.

    Article  CAS  Google Scholar 

  • Toueille M, El-Andaloussi N, Frouin I, Freire R, Funk D, Shevelev I et al. (2004). The human Rad9/Rad1/Hus1 damage sensor clamp interacts with DNA polymerase beta and increases its DNA substrate utilisation efficiency: implications for DNA repair. Nucleic Acids Res 32: 3316–3324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Kobbe C, Thoma NH, Czyzewski BK, Pavletich NP, Bohr VA . (2003). Werner syndrome protein contains three structure-specific DNA binding domains. J Biol Chem 278: 52997–53006.

    Article  CAS  PubMed  Google Scholar 

  • Weiss RS, Enoch T, Leder P . (2000). Inactivation of mouse Hus1 results in genomic instability and impaired responses to genotoxic stress. Genes Dev 14: 1886–1898.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilke CM, Hall BK, Hoge A, Paradee W, Smith DI, Glover TW . (1996). FRA3B extends over a broad region and contains a spontaneous HPV16 integration site: direct evidence for the coincidence of viral integration sites and fragile sites. Hum Mol Genet 5: 187–195.

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Bai L, Gong Y, Xie W, Hang H, Jiang T . (2009). Structure and functional implications of the human rad9-hus1-rad1 cell cycle checkpoint complex. J Biol Chem 284: 20457–20461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Weiss RS . (2007). Increased common fragile site expression, cell proliferation defects, and apoptosis following conditional inactivation of mouse Hus1 in primary cultured cells. Mol Biol Cell 18: 1044–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou L, Cortez D, Elledge SJ . (2002). Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev 16: 198–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs L Comai and M Lalle for providing recombinant proteins and Drs D Toniolo and M Rocchi for providing BACs for FISH analysis. This work was supported by Fondazione Telethon to PP (Grant no. GGP04094) and, in part, by grants from Associazione Italiana per la Ricerca sul Cancro (AIRC) to PP (Grant no. IG9294) and AF (Grant no. IG4400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Pichierri.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website )

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pichierri, P., Nicolai, S., Cignolo, L. et al. The RAD9–RAD1–HUS1 (9.1.1) complex interacts with WRN and is crucial to regulate its response to replication fork stalling. Oncogene 31, 2809–2823 (2012). https://doi.org/10.1038/onc.2011.468

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.468

Keywords

This article is cited by

Search

Quick links