Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lemur tyrosine kinase-2 signalling regulates kinesin-1 light chain-2 phosphorylation and binding of Smad2 cargo

Abstract

A recent genome-wide association study identified the gene encoding lemur tyrosine kinase-2 (LMTK2) as a susceptibility gene for prostate cancer. The identified genetic alteration is within intron 9, but the mechanisms by which LMTK2 may impact upon prostate cancer are not clear because the functions of LMTK2 are poorly understood. Here, we show that LMTK2 regulates a known pathway that controls phosphorylation of kinesin-1 light chain-2 (KLC2) by glycogen synthase kinase-3β (GSK3β). KLC2 phosphorylation by GSK3β induces the release of cargo from KLC2. LMTK2 signals via protein phosphatase-1C (PP1C) to increase inhibitory phosphorylation of GSK3β on serine-9 that reduces KLC2 phosphorylation and promotes binding of the known KLC2 cargo Smad2. Smad2 signals to the nucleus in response to transforming growth factor-β (TGFβ) receptor stimulation and transport of Smad2 by kinesin-1 is required for this signalling. We show that small interfering RNA loss of LMTK2 not only reduces binding of Smad2 to KLC2, but also inhibits TGFβ-induced Smad2 signalling. Thus, LMTK2 may regulate the activity of kinesin-1 motor function and Smad2 signalling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bajaj NP, al-Sarraj ST, Leigh PN, Anderson V, Miller CC . (1999). Cyclin dependent kinase-5 (CDK-5) phosphorylates neurofilament heavy (NF-H) chain to generate epitopes for antibodies that label neurofilament accumulations in amyotrophic lateral sclerosis (ALS) and is present in affected motor neurones in ALS. Prog Neuropsychopharmacol Biol Psychiatry 23: 833–850.

    Article  CAS  PubMed  Google Scholar 

  • Batut J, Howell M, Hill CS . (2007). Kinesin-mediated transport of Smad2 is required for signaling in response to TGF-beta ligands. Dev Cell 12: 261–274.

    Article  CAS  PubMed  Google Scholar 

  • Bhat R, Xue Y, Berg S, Hellberg S, Ormo M, Nilsson Y et al. (2003). Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J Biol Chem 278: 45937–45945.

    Article  CAS  PubMed  Google Scholar 

  • Chibalina MV, Seaman MN, Miller CC, Kendrick-Jones J, Buss F . (2007). Myosin VI and its interacting protein LMTK2 regulate tubule formation and transport to the endocytic recycling compartment. J Cell Sci 120: 4278–4288.

    Article  CAS  PubMed  Google Scholar 

  • Cross DAE, Alessi DR, Cohen P, Andjelkovich M, Hemmings B . (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785–789.

    Article  CAS  PubMed  Google Scholar 

  • DeBoer SR, You Y, Szodorai A, Kaminska A, Pigino G, Nwabuisi E et al. (2008). Conventional kinesin holoenzymes are composed of heavy and light chain homodimers. Biochemistry 47: 4535–4543.

    Article  CAS  PubMed  Google Scholar 

  • De Vos KJ, Grierson AJ, Ackerley S, Miller CCJ . (2008). Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci 31: 151–173.

    Article  CAS  PubMed  Google Scholar 

  • Dohadwala M, Da Cruz e Silva EF, Hall FL, Williams RT, Carbonaro-Hall DA, Nairn AC et al. (1994). Phosphorylation and inactivation of protein phosphatase 1 by cyclin-dependent kinases. Proc Natl Acad Sci USA 91: 6408–6412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, Guy M, Jugurnauth SK et al. (2008). Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 40: 316–321.

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald LM, Kwon EM, Koopmeiners JS, Salinas CA, Stanford JL, Ostrander EA . (2009). Analysis of recently identified prostate cancer susceptibility loci in a population-based study: associations with family history and clinical features. Clin Cancer Res 15: 3231–3237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu AK, Fu WY, Cheung J, Tsim KW, Ip FC, Wang JH et al. (2001). Cdk5 is involved in neuregulin-induced AChR expression at the neuromuscular junction. Nat Neurosci 4: 374–381.

    Article  CAS  PubMed  Google Scholar 

  • Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature 446: 153–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guidato S, McLoughlin D, Grierson AJ, Miller CCJ . (1998). Cyclin D2 interacts with cdk-5 and modulates cellular cdk-5/p35 activity. J Neurochem 70: 492–500.

    Google Scholar 

  • Guo CY, Brautigan DL, Larner JM . (2002). Ionizing radiation activates nuclear protein phosphatase-1 by ATM-dependent dephosphorylation. J Biol Chem 277: 41756–41761.

    Article  CAS  PubMed  Google Scholar 

  • Harries LW, Perry JR, McCullagh P, Crundwell M . (2010). Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer. BMC Cancer 10: 315.

    Article  PubMed  PubMed Central  Google Scholar 

  • Helps NR, Luo X, Barker HM, Cohen PT . (2000). NIMA-related kinase 2 (Nek2), a cell-cycle-regulated protein kinase localized to centrosomes, is complexed to protein phosphatase 1. Biochem J 349: 509–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez F, Langa E, Cuadros R, Avila J, Villanueva N . (2010). Regulation of GSK3 isoforms by phosphatases PP1 and PP2A. Mol Cell Biochem 344: 211–215.

    Article  CAS  PubMed  Google Scholar 

  • Hill CS . (2009). Nucleocytoplasmic shuttling of Smad proteins. Cell Res 19: 36–46.

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa N, Noda Y, Tanaka Y, Niwa S . (2009). Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10: 682–696.

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Kon T, Ohkura R, Yamakawa H, Ohara O, Yokota J et al. (2008). BREK/LMTK2 is a myosin VI-binding protein involved in endosomal membrane trafficking. Genes Cells 13: 483–495.

    Article  CAS  PubMed  Google Scholar 

  • Katsuno M, Adachi H, Banno H, Suzuki K, Tanaka F, Sobue G . (2011). Transforming growth factor-beta signaling in motor neuron diseases. Curr Mol Med 11: 48–56.

    Article  CAS  PubMed  Google Scholar 

  • Kawa S, Fujimoto J, Tezuka T, Nakazawa T, Yamamoto T . (2004). Involvement of BREK, a serine/threonine kinase enriched in brain, in NGF signalling. Genes Cells 9: 219–232.

    Article  CAS  PubMed  Google Scholar 

  • Kawa S, Ito C, Toyama Y, Maekawa M, Tezuka T, Nakamura T et al. (2006). Azoospermia in mice with targeted disruption of the Brek/Lmtk2 (brain-enriched kinase/lemur tyrosine kinase 2) gene. Proc Natl Acad Sci USA 103: 19344–19349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesavapany S, Lau K-F, Ackerley S, Banner S, Shemilt SJA, Cooper JD et al. (2003). Identification of a novel, membrane-associated neuronal kinase, cdk5/p35 regulated kinase (cprk). J Neurosci 23: 4975–4983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon YG, Lee SY, Choi Y, Greengard P, Nairn AC . (1997). Cell cycle-dependent phosphorylation of mammalian protein phosphatase 1 by cdc2 kinase. Proc Natl Acad Sci USA 94: 2168–2173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau KF, Chan WM, Perkinton MS, Tudor EL, Chang RC, Chan HY et al. (2008). Dexras1 interacts with FE65 to regulate FE65-amyloid precursor protein dependent transcription. J Biol Chem 283: 34728–34737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MH, Yang HY . (2001). Negative regulators of cyclin-dependent kinases and their roles in cancers. Cell Mol Life Sci 58: 1907–1922.

    Article  CAS  PubMed  Google Scholar 

  • Lew J, Huang Q-Q, Zhong Q, Winkfein RJ, Aebersold R, Hunt T et al. (1994). A brain-specific activator of cyclin-dependent kinase 5. Nature 371: 423–426.

    Article  CAS  PubMed  Google Scholar 

  • Li T, Chalifour LE, Paudel HK . (2007). Phosphorylation of protein phosphatase 1 (PP1) by cyclin-dependent protein kinase 5 during nerve growth factor-induced PC12 cell differentiation. J Biol Chem 282: 6619–6628.

    Article  CAS  PubMed  Google Scholar 

  • Lovestone S, Reynolds CH, Latimer D, Davis DR, Anderton BH, Gallo J-M et al (1994). Alzheimer's disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr Biol 4: 1077–1086.

    Article  CAS  PubMed  Google Scholar 

  • Martin K, Steinberg TH, Cooley LA, Gee KR, Beechem JM, Patton WF . (2003). Quantitative analysis of protein phosphorylation status and protein kinase activity on microarrays using a novel fluorescent phosphorylation sensor dye. Proteomics 3: 1244–1255.

    Article  CAS  PubMed  Google Scholar 

  • Massague J . (2008). TGFbeta in cancer. Cell 134: 215–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massague J, Gomis RR . (2006). The logic of TGFbeta signaling. FEBS Lett 580: 2811–2820.

    Article  CAS  PubMed  Google Scholar 

  • Massague J, Seoane J, Wotton D . (2005). Smad transcription factors. Genes Dev 19: 2783–2810.

    Article  CAS  PubMed  Google Scholar 

  • McLoughlin DM, Miller CCJ . (1996). The intracellular cytoplasmic domain of the Alzheimer's disease amyloid precursor protein interacts with phosphotyrosine binding domain proteins in the yeast two-hybrid system. FEBS Lett 397: 197–200.

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi S, Matsuura N, Ubukata M, Oikawa H, Shima H, Kikuchi K . (2001). Tautomycetin is a novel and specific inhibitor of serine/threonine protein phosphatase type 1, PP1. Biochem Biophys Res Commun 287: 328–331.

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi S, Shima H, Tanuma N, Matsuura N, Takekawa M, Urano T et al. (2003). Usage of tautomycetin, a novel inhibitor of protein phosphatase 1 (PP1), reveals that PP1 is a positive regulator of Raf-1 in vivo. J Biol Chem 278: 82–88.

    Article  CAS  PubMed  Google Scholar 

  • Morfini G, Szebenyi G, Brown H, Pant HC, Pigino G, DeBoer S et al. (2004). A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J 23: 2235–2245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morfini G, Szebenyi G, Elluru R, Ratner N, Brady ST . (2002). Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J 21: 281–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami M, Kawachi H, Ogawa K, Nishino Y, Funaba M . (2009). Receptor expression modulates the specificity of transforming growth factor-beta signaling pathways. Genes Cells 14: 469–482.

    Article  CAS  PubMed  Google Scholar 

  • Noda D, Itoh S, Watanabe Y, Inamitsu M, Dennler S, Itoh F et al. (2006). ELAC2, a putative prostate cancer susceptibility gene product, potentiates TGF-beta/Smad-induced growth arrest of prostate cells. Oncogene 25: 5591–5600.

    Article  CAS  PubMed  Google Scholar 

  • Puri C, Chibalina MV, Arden SD, Kruppa AJ, Kendrick-Jones J, Buss F . (2010). Overexpression of myosin VI in prostate cancer cells enhances PSA and VEGF secretion, but has no effect on endocytosis. Oncogene 29: 188–200.

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Friedman DS, Goldstein LS . (1998). Two kinesin light chain genes in mice. Identification and characterization of the encoded proteins. J Biol Chem 273: 15395–15403.

    Article  CAS  PubMed  Google Scholar 

  • Rahman-Roblick R, Hellman U, Becker S, Bader FG, Auer G, Wiman KG et al. (2008). Proteomic identification of p53-dependent protein phosphorylation. Oncogene 27: 4854–4859.

    Article  CAS  PubMed  Google Scholar 

  • Reynisdottir I, Polyak K, Iavarone A, Massague J . (1995). Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev 9: 1831–1845.

    Article  CAS  PubMed  Google Scholar 

  • Ross S, Hill CS . (2008). How the Smads regulate transcription. Int J Biochem Cell Biol 40: 383–408.

    Article  CAS  PubMed  Google Scholar 

  • Stambolic V, Woodgett JR . (1994). Mitogen inactivation of glycogen synthase kinase-3b in intact cells via serine 9 phosphorylation. Biochem J 303: 701–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su AI, Welsh JB, Sapinoso LM, Kern SG, Dimitrov P, Lapp H et al. (2001). Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res 61: 7388–7393.

    CAS  PubMed  Google Scholar 

  • Su SC, Tsai LH . (2011). Cyclin-dependent kinases in brain development and disease. Annu Rev Cell Dev Biol (in press).

  • Sutherland C, Leighton IA, Cohen P . (1993). Inactivation of glycogen synthase kinase-3b by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J 296: 15–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomomura M, Morita N, Yoshikawa F, Konishi A, Akiyama H, Furuichi T et al. (2007). Structural and functional analysis of the apoptosis-associated tyrosine kinase (AATYK) family. Neuroscience 148: 510–521.

    Article  CAS  PubMed  Google Scholar 

  • Town T, Laouar Y, Pittenger C, Mori T, Szekely CA, Tan J et al. (2008). Blocking TGF-beta-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med 14: 681–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai L-H, Delalle I, Caviness JVS, Chae T, Harlow E . (1994). p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371: 419–423.

    Article  CAS  PubMed  Google Scholar 

  • Vagnoni A, Rodriguez L, Manser C, De Vos KJ, Miller CCJ . (2011). Phosphorylation of kinesin light chain-1 at serine-460 modulates binding and trafficking of calsyntenin-1. J Cell Sci 124: 1032–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Brautigan DL . (2002). A novel transmembrane ser/thr kinase complexes with protein phosphatase-1 and inhibitor-2. J Biol Chem 277: 49605–49612.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Brautigan DL . (2006). Peptide microarray analysis of substrate specificity of the transmembrane SER/THR kinase KPI-2 reveals reactivity with CFTR and phosphorylase. Mol Cell Proteomics 5: 2124–2130.

    Article  CAS  PubMed  Google Scholar 

  • Waters KM, Le Marchand L, Kolonel LN, Monroe KR, Stram DO, Henderson BE et al. (2009). Generalizability of associations from prostate cancer genome-wide association studies in multiple populations. Cancer Epidemiol Biomarkers Prev 18: 1285–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wozniak MJ, Allan VJ . (2006). Cargo selection by specific kinesin light chain 1 isoforms. EMBO J 25: 5457–5468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Zawel L, Lengauer C, Kinzler KW, Vogelstein B . (1998). Characterization of human FAST-1, a TGF beta and activin signal transducer. Mol Cell 2: 121–127.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Wellcome Trust, MRC, MNDA and BBSRC. We thank Caroline Hill (Cancer Research UK London Research Institute) for EGFP-Smad2 plasmid, Peter ten Dijke (Leiden University Medical Centre) for Smad2 reporter plasmids, Folma Buss (University of Cambridge UK) for LMTK2 antibody and Manuel Mayr (KCL London) for assistance with analyses of Pro-Q labelling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C C J Miller.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manser, C., Guillot, F., Vagnoni, A. et al. Lemur tyrosine kinase-2 signalling regulates kinesin-1 light chain-2 phosphorylation and binding of Smad2 cargo. Oncogene 31, 2773–2782 (2012). https://doi.org/10.1038/onc.2011.437

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.437

Keywords

This article is cited by

Search

Quick links