Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of microprocessor-dependent cancer cells allows screening for growth-sustaining micro-RNAs

Abstract

Micro-RNAs are deregulated in cancer cells, and some are either tumor suppressive or oncogenic. In addition, a link has been established between decreased expression of micro-RNAs and transformation, and several proteins of the RNA interference pathway have been shown to be haploinsufficient tumor suppressors. Oncogenic micro-RNAs (oncomiRs) could represent new therapeutic targets, and their identification is therefore crucial. However, structural and functional redundancy between micro-RNAs hampers approaches relying on individual micro-RNA inhibition. We reasoned that in cancer cells that depend on oncomiRs, impairing the micro-RNA pathway could lead to growth perturbation rather than increased tumorigenesis. Identifying such cells could allow functional analyses of individual micro-RNAs by complementation of the phenotypes observed upon global micro-RNA inhibition. Therefore, we developed episomal vectors coding for small hairpin RNAs targeting either Drosha or DGCR8, the two components of the microprocessor, the nuclear micro-RNA maturation complex. We identified cancer cell lines in which both vectors induced colony growth arrest. We then screened for individual micro-RNAs complementing this growth arrest, and identified miR-19a, miR-19b, miR-20a and miR-27b as major growth-sustaining micro-RNAs. However, the effect of miR-19a and miR-19b was only transient. In addition, embryonic stem cell-derived micro-RNAs with miR-20a seeds were much less efficient than miR-20a in sustaining cancer cell growth, a finding that contrasted with results obtained in stem cells. Finally, we showed that the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10, a shared target of miR-19 and miR-20, was functionally involved in the growth arrest induced by microprocessor inhibition. We conclude that our approach allowed to identify microprocessor-dependent cancer cells, which could be used to screen for growth-sustaining micro-RNAs. This complementation screen unveiled functional differences between homologous micro-RNAs. Phenotypic characterization of the complemented cells will allow precise functional studies of these micro-RNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Alimonti A, Carracedo A, Clohessy JG, Trotman LC, Nardella C, Egia A et al. (2010). Subtle variations in Pten dose determine cancer susceptibility. Nat Genet 42: 454–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27: 2128–2136.

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP . (2009). MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biard DS, Despras E, Sarasin A, Angulo JF . (2005). Development of new EBV-based vectors for stable expression of small interfering RNA to mimick human syndromes: application to NER gene silencing. Mol Cancer Res 3: 519–529.

    Article  CAS  PubMed  Google Scholar 

  • Biard DS . (2007). Untangling the relationships between DNA repair pathways by silencing more than 20 DNA repair genes in human stable clones. Nucleic Acids Res 35: 3535–3550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehler C, Gauthier LR, Mortusewicz O, Biard DS, Saliou JM, Bresson A et al. (2011). Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression. Proc Natl Acad Sci USA 108: 2783–2788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L et al. (2008). The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14: 1271–1277.

    Article  CAS  PubMed  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R . (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550–553.

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99: 15524–15529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carracedo A, Pandolfi PP . (2008). The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27: 5527–5541.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y et al. (2009). Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28: 1385–1392.

    Article  CAS  PubMed  Google Scholar 

  • Chong MM, Rasmussen JP, Rundensky AY, Littman DR . (2008). The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J Exp Med 205: 2005–2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole KA, Attiyeh EF, Mosse YP, Laquaglia MJ, Diskin SJ, Brodeur GM et al. (2008). A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 6: 735–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colmont C, Michelet S, Guivarc'h D, Rousselet G . (2001). Urea sensitizes mIMCD3 cells to heat shock-induced apoptosis: protection by NaCl. Am J Physiol Cell Physiol 280: C614–C620.

    Article  CAS  PubMed  Google Scholar 

  • Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz Jr LA, Sjoblom T et al. (2006). The colorectal microRNAome. Proc Natl Acad Sci USA 103: 3687–3692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ . (2004). Processing of primary microRNAs by the Microprocessor complex. Nature 432: 231–235.

    Article  CAS  PubMed  Google Scholar 

  • Desaint S, Luriau S, Aude JC, Rousselet G, Toledano MB . (2004). Mammalian antioxidant defenses are not inducible by H2O2. J Biol Chem 279: 31157–31163.

    Article  CAS  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92: 9363–9367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L et al. (2008). The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 7: 759–764.

    Article  CAS  PubMed  Google Scholar 

  • Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S et al. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science 308: 833–838.

    Article  CAS  PubMed  Google Scholar 

  • Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N et al. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature 432: 235–240.

    Article  CAS  PubMed  Google Scholar 

  • Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN . (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18: 3016–3027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Pedersen JS, Kwon SC, Belair CD, Kim YK, Yeom KH et al. (2009). Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136: 75–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hand NJ, Master ZR, Le Lay J, Friedman JR . (2009). Hepatic function is preserved in the absence of mature microRNAs. Hepatology 49: 618–626.

    Article  CAS  PubMed  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. (2005). A microRNA polycistron as a potential human oncogene. Nature 435: 828–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD . (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293: 834–838.

    Article  CAS  PubMed  Google Scholar 

  • Ivey KN, Srivastava D . (2010). MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 7: 36–41.

    Article  CAS  PubMed  Google Scholar 

  • Kadener S, Rodriguez J, Abruzzi KC, Khodor YL, Sugino K, Marr II MT et al. (2009). Genome-wide identification of targets of the drosha-pasha/DGCR8 complex. RNA 15: 537–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krol J, Loedige I, Filipowicz W . (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11: 597–610.

    Article  CAS  PubMed  Google Scholar 

  • Kuchenbauer F, Mah SM, Heuser M, McPherson A, Ruschmann J, Rouhi A et al. (2011). Comprehensive analysis of mammalian miRNA* species and their role in myeloid cells. Blood (e-pub ahead of print 31 May 2011; doi:10.1182).

  • Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T . (2007). Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39: 673–677.

    Article  CAS  PubMed  Google Scholar 

  • Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J et al. (2009). Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 23: 2700–2704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landthaler M, Yalcin A, Tuschl T . (2004). The human DiGeorge syndrome critical region gene 8 and Its D. Melanogaster homolog are required for miRNA biogenesis. Curr Biol 14: 2162–2167.

    Article  CAS  PubMed  Google Scholar 

  • Le May N, Mota-Fernandes D, Velez-Cruz R, Iltis I, Biard D, Egly JM . (2010). NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack. Mol Cell 38: 54–66.

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415–419.

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . (2003). Prediction of mammalian microRNA targets. Cell 115: 787–798.

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH et al. (2008). MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27: 4373–4379.

    Article  CAS  PubMed  Google Scholar 

  • Mayr C, Hemann MT, Bartel DP . (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315: 1576–1579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina PP, Nolde M, Slack FJ . (2010). OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467: 86–90.

    Article  CAS  PubMed  Google Scholar 

  • Melo SA, Moutinho C, Ropero S, Calin GA, Rossi S, Spizzo R et al. (2010). A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18: 303–315.

    Article  CAS  PubMed  Google Scholar 

  • Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA et al. (2009). A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 41: 365–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, McGonagle SM et al. (2007). Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet 3: e215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ . (2005). Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA 102: 12135–12140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP . (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465: 1033–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi J, Yu JY, Shcherbata HR, Mathieu J, Wang AJ, Seal S et al. (2009). microRNAs regulate human embryonic stem cell division. Cell Cycle 8: 3729–3741.

    Article  CAS  PubMed  Google Scholar 

  • Runnebaum IB, Nagarajan M, Bowman M, Soto D, Sukumar S . (1991). Mutations in p53 as potential molecular markers for human breast cancer. Proc Natl Acad Sci USA 88: 10657–10661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenoy A, Blelloch R . (2009). Genomic analysis suggests that mRNA destabilization by the microprocessor is specialized for the auto-regulation of Dgcr8. PLoS One 4: e6971.

    Article  PubMed  PubMed Central  Google Scholar 

  • Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY . (2007). miR-21-mediated tumor growth. Oncogene 26: 2799–2803.

    Article  CAS  PubMed  Google Scholar 

  • Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM . (2006). Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20: 2202–2207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M et al. (2010). Regression of murine lung tumors by the let-7 microRNA. Oncogene 29: 1580–1587.

    Article  CAS  PubMed  Google Scholar 

  • Triboulet R, Chang HM, Lapierre RJ, Gregory RI . (2009). Post-transcriptional control of DGCR8 expression by the Microprocessor. Rna 15: 1005–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R . (2008). Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 40: 1478–1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R . (2007). DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39: 380–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch C, Chen Y, Stallings RL . (2007). MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26: 5017–5022.

    Article  CAS  PubMed  Google Scholar 

  • Weng LP, Smith WM, Dahia PL, Ziebold U, Gil E, Lees JA et al. (1999). PTEN suppresses breast cancer cell growth by phosphatase activity-dependent G1 arrest followed by cell death. Cancer Res 59: 5808–5814.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V Neuville for assistance with the in vivo experiments, B Vogelstein and B Bugler for the HCT116 cell lines, J Lebeau for the A549, T-47D, ZR751, MDA-MB-157 and MDA-MB-231 cell lines, and DSF Biard for the pEBP and pEBH vectors and advice for their use. We also thank M Mangeney, C Pique and all members of the Angulo laboratory for helpful discussions and support. This work was supported by the Electricité De France grant no. V3-104 to G.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Rousselet.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peric, D., Chvalova, K. & Rousselet, G. Identification of microprocessor-dependent cancer cells allows screening for growth-sustaining micro-RNAs. Oncogene 31, 2039–2048 (2012). https://doi.org/10.1038/onc.2011.391

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.391

Keywords

This article is cited by

Search

Quick links