Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An integrated genomic approach identifies ARID1A as a candidate tumor-suppressor gene in breast cancer

Abstract

Tumor-suppressor genes (TSGs) have been classically defined as genes whose loss of function in tumor cells contributes to the formation and/or maintenance of the tumor phenotype. TSGs containing nonsense mutations may not be expressed because of nonsense-mediated RNA decay (NMD). We combined inhibition of the NMD process, which clears transcripts that contain nonsense mutations, with the application of high-density single-nucleotide polymorphism arrays analysis to discriminate allelic content in order to identify candidate TSGs in five breast cancer cell lines. We identified ARID1A as a target of NMD in the T47D breast cancer cell line, likely as a consequence of a mutation in exon-9, which introduces a premature stop codon at position Q944. ARID1A encodes a human homolog of yeast SWI1, which is an integral member of the hSWI/SNF complex, an ATP-dependent, chromatin-remodeling, multiple-subunit enzyme. Although we did not find any somatic mutations in 11 breast tumors, which show DNA copy-number loss at the 1p36 locus adjacent to ARID1A, we show that low ARID1A RNA or nuclear protein expression is associated with more aggressive breast cancer phenotypes, such as high tumor grade, in two independent cohorts of over 200 human breast cancer cases each. We also found that low ARID1A nuclear expression becomes more prevalent during the later stages of breast tumor progression. Finally, we found that ARID1A re-expression in the T47D cell line results in significant inhibition of colony formation in soft agar. These results suggest that ARID1A may be a candidate TSG in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adler HT, Chinery R, Wu DY, Kussick SJ, Payne JM, Fornace Jr AJ et al. (1999). Leukemic HRX fusion proteins inhibit GADD34-induced apoptosis and associate with the GADD34 and hSNF5/INI1 proteins. Mol Cell Biol 19: 7050–7060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belandia B, Orford RL, Hurst HC, Parker MG . (2002). Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes. EMBO J 21: 4094–4103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berx G, van Roy F . (2009). Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol 1: a003129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Biegel JA, Pollack IF . (2004). Molecular analysis of pediatric brain tumors. Curr Oncol Rep 6: 445–452.

    Article  PubMed  Google Scholar 

  • Campeau PM, Foulkes WD, Tischkowitz MD . (2008). Hereditary breast cancer: new genetic developments, new therapeutic avenues. Hum Genet 124: 31–42.

    Article  CAS  PubMed  Google Scholar 

  • Carlson M, Laurent BC . (1994). The SNF/SWI family of global transcriptional activators. Curr Opin Cell Biol 6: 396–402.

    Article  CAS  PubMed  Google Scholar 

  • Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG et al. (2005). Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33: e175.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dallas PB, Cheney IW, Liao DW, Bowrin V, Byam W, Pacchione S et al. (1998). p300/CREB binding protein-related protein p270 is a component of mammalian SWI/SNF complexes. Mol Cell Biol 18: 3596–3603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dallas PB, Pacchione S, Wilsker D, Bowrin V, Kobayashi R, Moran E . (2000). The human SWI–SNF complex protein p270 is an ARID family member with non-sequence-specific DNA binding activity. Mol Cell Biol 20: 3137–3146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dworkin AM, Huang TH, Toland AE . (2009). Epigenetic alterations in the breast: implications for breast cancer detection, prognosis and treatment. Semin Cancer Biol 19: 165–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forbes SA, Tang G, Bindal N, Bamford S, Dawson E, Cole C et al. (2010). COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res 38: D652–D657.

    Article  CAS  PubMed  Google Scholar 

  • Grand F, Kulkarni S, Chase A, Goldman JM, Gordon M, Cross NC . (1999). Frequent deletion of hSNF5/INI1, a component of the SWI/SNF complex, in chronic myeloid leukemia. Cancer Res 59: 3870–3874.

    CAS  PubMed  Google Scholar 

  • Hassan S, Baccarelli A, Salvucci O, Basik M . (2008). Plasma stromal cell-derived factor-1: host derived marker predictive of distant metastasis in breast cancer. Clin Cancer Res 14: 446–454.

    Article  CAS  PubMed  Google Scholar 

  • Hassan S, Ferrario C, Saragovi U, Quenneville L, Gaboury L, Baccarelli A et al. (2009). The influence of tumor-host interactions in the stromal cell-derived factor-1/CXCR4 ligand/receptor axis in determining metastatic risk in breast cancer. Am J Pathol 175: 66–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirschhorn JN, Bortvin AL, Ricupero-Hovasse SL, Winston F . (1995). A new class of histone H2A mutations in Saccharomyces cerevisiae causes specific transcriptional defects in vivo. Mol Cell Biol 15: 1999–2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosein AN, Wu M, Arcand SL, Lavallee S, Hebert J, Tonin PN et al. (2010). Breast carcinoma-associated fibroblasts rarely contain p53 mutations or chromosomal aberrations. Cancer Res 70: 5770–5777.

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Zhao YL, Li Y, Fletcher JA, Xiao S . (2007). Genomic and functional evidence for an ARID1A tumor suppressor role. Genes Chromosomes Cancer 46: 745–750.

    Article  CAS  PubMed  Google Scholar 

  • Huusko P, Ponciano-Jackson D, Wolf M, Kiefer JA, Azorsa DO, Tuzmen S et al. (2004). Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nat Genet 36: 979–983.

    Article  CAS  PubMed  Google Scholar 

  • Jones S, Wang TL, Shih Ie M, Mao TL, Nakayama K, Roden R et al. (2010). Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330: 228–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennison JA . (1995). The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu Rev Genet 29: 289–303.

    Article  CAS  PubMed  Google Scholar 

  • Li XS, Trojer P, Matsumura T, Treisman JE, Tanese N . (2010). Mammalian SWI/SNF—a subunit BAF250/ARID1 is an E3 ubiquitin ligase that targets histone H2B. Mol Cell Biol 30: 1673–1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina PP, Sanchez-Cespedes M . (2008). Involvement of the chromatin-remodeling factor BRG1/SMARCA4 in human cancer. Epigenetics 3: 64–68.

    Article  PubMed  Google Scholar 

  • Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A et al. (2005). An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102: 13550–13555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagl Jr NG, Patsialou A, Haines DS, Dallas PB, Beck Jr GR, Moran E . (2005). The p270 (ARID1A/SMARCF1) subunit of mammalian SWI/SNF-related complexes is essential for normal cell cycle arrest. Cancer Res 65: 9236–9244.

    Article  CAS  PubMed  Google Scholar 

  • Nagl Jr NG, Wang X, Patsialou A, Van Scoy M, Moran E . (2007). Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control. EMBO J 26: 752–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagl Jr NG, Zweitzig DR, Thimmapaya B, Beck Jr GR, Moran E . (2006). The c-myc gene is a direct target of mammalian SWI/SNF-related complexes during differentiation-associated cell cycle arrest. Cancer Res 66: 1289–1293.

    Article  CAS  PubMed  Google Scholar 

  • Noensie EN, Dietz HC . (2001). A strategy for disease gene identification through nonsense-mediated mRNA decay inhibition. Nat Biotechnol 19: 434–439.

    Article  CAS  PubMed  Google Scholar 

  • Orlando FA, Brown KD . (2009). Unraveling breast cancer heterogeneity through transcriptomic and epigenomic analysis. Ann Surg Oncol 16: 2270–2279.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T et al. (2009). Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27: 1160–1167.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patsialou A, Wilsker D, Moran E . (2005). DNA-binding properties of ARID family proteins. Nucleic Acids Res 33: 66–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Presneau N, Manderson EN, Tonin PN . (2003). The quest for a tumor suppressor gene phenotype. Curr Mol Med 3: 605–629.

    Article  CAS  PubMed  Google Scholar 

  • Roberts CW, Biegel JA . (2009). The role of SMARCB1/INI1 in development of rhabdoid tumor. Cancer Biol Ther 8: 412–416.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Nieto S, Sanchez-Cespedes M . (2009). BRG1 and LKB1: tales of two tumor suppressor genes on chromosome 19p and lung cancer. Carcinogenesis 30: 547–554.

    Article  CAS  PubMed  Google Scholar 

  • Rozenblatt-Rosen O, Rozovskaia T, Burakov D, Sedkov Y, Tillib S, Blechman J et al. (1998). The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc Natl Acad Sci USA 95: 4152–4157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science 314: 268–274.

    Article  PubMed  Google Scholar 

  • Staden R, Beal KF, Bonfield JK . (2000). The Staden package, 1998. Methods Mol Biol 132: 115–130.

    CAS  PubMed  Google Scholar 

  • Strumane K, Berx G, Van Roy F . (2004). Cadherins in cancer. Handb Exp Pharmacol 165: 69–103.

    Article  CAS  Google Scholar 

  • Sudarsanam P, Cao Y, Wu L, Laurent BC, Winston F . (1999). The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription in vivo and is partially redundant with the histone acetyltransferase, Gcn5. EMBO J 18: 3101–3106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudarsanam P, Iyer VR, Brown PO, Winston F . (2000). Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97: 3364–3369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi T, Chen BK, Qiu Y, Sonobe H, Ohtsuki Y . (1997). Molecular cloning and expression of a novel human cDNA containing CAG repeats. Gene 204: 71–77.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Furihata M, Heng HH, Sonobe H, Ohtsuki Y . (1998). Chromosomal mapping and expression of the human B120 gene. Gene 213: 189–193.

    Article  CAS  PubMed  Google Scholar 

  • Vallone D, Battista S, Pierantoni GM, Fedele M, Casalino L, Santoro M et al. (1997). Neoplastic transformation of rat thyroid cells requires the junB and fra-1 gene induction which is dependent on the HMGI-C gene product. EMBO J 16: 5310–5321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Rechem C, Boulay G, Leprince D . (2009). HIC1 interacts with a specific subunit of SWI/SNF complexes, ARID1A/BAF250A. Biochem Biophys Res Commun 385: 586–590.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Kinzler KW . (2004). Cancer genes and the pathways they control. Nat Med 10: 789–799.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Nagl NG, Wilsker D, Van Scoy M, Pacchione S, Yaciuk P et al. (2004). Two related ARID family proteins are alternative subunits of human SWI/SNF complexes. Biochem J 383: 319–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T et al. (2010). ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 363: 1532–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilsker D, Patsialou A, Zumbrun SD, Kim S, Chen Y, Dallas PB et al. (2004). The DNA-binding properties of the ARID-containing subunits of yeast and mammalian SWI/SNF complexes. Nucleic Acids Res 32: 1345–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winston F, Carlson M . (1992). Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet 8: 387–391.

    Article  CAS  PubMed  Google Scholar 

  • Yuge M, Nagai H, Uchida T, Murate T, Hayashi Y, Hotta T et al. (2000). HSNF5/INI1 gene mutations in lymphoid malignancy. Cancer Genet Cytogenet 122: 37–42.

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Chambers KJ, Faller DV, Wang S . (2007). Reprogramming of the SWI/SNF complex for co-activation or co-repression in prohibitin-mediated estrogen receptor regulation. Oncogene 26: 7153–7157.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Quebec Breast Cancer Foundation to Mark Basik and Patricia N Tonin. EP is supported by the McGill Integrated Cancer Research Training Program. The tumor bank was supported by the Fonds de Recherche en Santé du Quebec (FRSQ) through the Réseau de Cancer—Axe cancer du sein et de l’ovaire to MB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Basik.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamo, A., Cavallone, L., Tuzmen, S. et al. An integrated genomic approach identifies ARID1A as a candidate tumor-suppressor gene in breast cancer. Oncogene 31, 2090–2100 (2012). https://doi.org/10.1038/onc.2011.386

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.386

Keywords

This article is cited by

Search

Quick links