Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Restoration of tumor suppressor p53 by differentially regulating pro- and anti-p53 networks in HPV-18-infected cervical cancer cells

Abstract

Abrogation of functional p53 is responsible for malignant cell transformation and maintenance of human papilloma virus (HPV)-infected cancer cells. Restoration of p53 has, therefore, been regarded as an important strategy for molecular intervention of HPV-associated malignancies. Here we report that differential regulation of pro- and anti-p53 setups not only upregulates p53 transcription but also stabilizes and activates p53 protein to ensure p53-induced apoptosis in HPV-18-infected cervical cancer. Functional restoration of p53 can be achieved by non-steroidal anti-inflammatory drug celecoxib via multiple molecular mechanisms: (i) inhibition of p53 degradation by suppressing viral oncoprotein E6 expression, (ii) promoting p53 transcription by downmodulating cycloxygenase-2 (Cox-2) and simultaneously retrieving p53 from Cox-2 association and (iii) activation of p53 via ataxia telangiectasia mutated-/p38 mitogen-activated protein kinase-mediated phosphorylations at serine-15/-46 residues. That restored p53 is functional has been confirmed by its ability of transactivating Bax and p53-upregulated modulator of apoptosis, which in turn switch on the apoptotic machinery in these cells. Studies undertaken in biopsy samples of cervical carcinoma further validated celecoxib effect. Our approaches involving gene manipulation and pharmacological interference finally highlight that celecoxib alters pro- and anti-p53 networks, not in isolation but in concert, to rejuvenate p53-dependent apoptotic program in HPV-infected cervical cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

ATM:

ataxia telangiectasia mutated

cDNA:

complementary DNA

CIN:

cervical intraepithelial neoplasia

Cox-2:

cycloxygenase-2

HPV:

human papillomavirus

MAPK:

mitogen-activated protein kinase

PUMA:

p53-upregulated modulator of apoptosis

siRNA:

short-interfering RNA

References

  • Adhikary A, Mohanty S, Lahiry L, Hossain DM, Chakraborty S, Das T . (2010). Theaflavins retard human breast cancer cell migration by inhibiting NF-kappaB via p53-ROS cross-talk. FEBS Lett 584: 7–14.

    Article  CAS  Google Scholar 

  • Amano T, Nakamizo A, Mishra SK, Gumin J, Shinojima N, Sawaya R et al. (2009). Simultaneous phosphorylation of p53 at serine 15 and 20 induces apoptosis inhuman glioma cells by increasing expression of pro-apoptotic genes. J Neurooncol 92: 357–371.

    Article  CAS  Google Scholar 

  • Appella E, Anderson CW . (2001). Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268: 2764–2772.

    Article  CAS  Google Scholar 

  • Becker K, Marchenko ND, Maurice M, Moll UM . (2007). Hyperubiquitylation of wild-type p53 contributes to cytoplasmic sequestration in neuroblastoma. Cell Death Differ 14: 1350–1360.

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Mandal D, Saha B, Sen GS, Das T, Sa G . (2007). Curcumin prevents tumor-induced T cell apoptosis through Stat-5a-mediated Bcl-2 induction. J Biol Chem 282: 15954–15964.

    Article  CAS  Google Scholar 

  • Blagosklonny MV . (2000). p53 from complexity to simplicity: mutant p53 stabilization, gain-of-function, and dominant-negative effect. FASEB J 14: 1901–1907.

    Article  CAS  Google Scholar 

  • Butz K, Denk C, Ullmann A, Scheffner M, Hoppe-Seyler F . (2000). Induction of apoptosis in human papillomaviruspositive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc Natl Acad Sci USA 97: 6693–6697.

    Article  CAS  Google Scholar 

  • Butz K, Ristriani T, Hengstermann A, Denk C, Scheffner M, Hoppe-Seyler F . (2003). siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene 22: 5938–5945.

    Article  CAS  Google Scholar 

  • Chakrabarti O, Krishna S . (2003). Molecular interactions of ‘high risk’ human papillo-maviruses E6 and E7 oncoproteins: implications for tumour progression. J Biosci 28: 337–348.

    Article  CAS  Google Scholar 

  • Chakraborty J, Banerjee S, Ray P, Hossain DM, Bhattacharyya S, Adhikary A et al. (2010). Gain of cellular adaptation due to prolonged p53 impairment leads to functional switchover from p53 to p73 during DNA damage in acute myeloid leukemia cells. J Biol Chem 285: 33104–33112.

    Article  CAS  Google Scholar 

  • Choudhuri T, Pal S, Das T, Sa G . (2005). Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem 280: 20059–20068.

    Article  CAS  Google Scholar 

  • Corcoran CA, He Q, Huang Y, Sheikh MS . (2005). Cyclooxygenase-2 interacts with p53 and interferes with p53-dependent transcription and apoptosis. Oncogene 24: 1634–1640.

    Article  CAS  Google Scholar 

  • Das T, Sa G, Hilston C, Kudo D, Rayman P, Biswas K et al. (2008a). GM1 and tumor necrosis factor-alpha, overexpressed in renal cell carcinoma, synergize to induce T-cell apoptosis. Cancer Res 68: 2014–2023.

    Article  CAS  Google Scholar 

  • Das T, Sa G, Paszkiewicz-Kozik E, Hilston C, Molto L, Rayman P et al. (2008b). Renal cell carcinoma tumors induce T cell apoptosis through receptor-dependent and receptor-independent pathways. J Immunol 180: 4687–4696.

    Article  CAS  Google Scholar 

  • de Moraes E, Dar NA, de Moura Gallo CV, Hainaut P . (2007). Cross-talks between cyclooxygenase-2 and tumor suppressor protein p53: balancing life and death during inflammatory stress and carcinogenesis. Int J Cancer 121: 929–937.

    Article  CAS  Google Scholar 

  • El-Deiry WS . (2003). The role of p53 in chemosensitivity and radiosensitivity. Oncogene 22: 7486–7495.

    Article  CAS  Google Scholar 

  • Espinosa JM, Emerson BM . (2001). Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell 8: 57–69.

    Article  CAS  Google Scholar 

  • Frank S, Menezes S, Lebreton-De Coster C, Oster M, Dubertret L, Coulomb B . (2006). Infrared radiation induces the p53 signaling pathway: role in infrared prevention of ultraviolet B toxicity. Exp Dermatol 15: 130–137.

    Article  CAS  Google Scholar 

  • Fuster JJ, Sanz-González SM, Moll UM, Andrés V . (2007). Classic and novel roles of p53: prospects for anticancer therapy. Trends Mol Med 13: 192–199.

    Article  CAS  Google Scholar 

  • Grösch S, Schilling K, Janssen A, Maier TJ, Niederberger E, Geisslinger G . (2005). Induction of apoptosis by R-flurbiprofen in human colon carcinoma cells: involvement of p53. Biochem Pharmacol 69: 831–839.

    Article  Google Scholar 

  • Han JA, Kim JI, Ongusaha PP, Hwang DH, Ballou LR, Mahale A et al. (2002). P53-mediated induction of Cox-2 counteracts p53- or genotoxic stress-induced apoptosis. EMBO J 21: 5635–5644.

    Article  CAS  Google Scholar 

  • Hengstermann A, D'silva MA, Kuballa P, Butz K, Hoppe-Seyler F, Scheffner M . (2005). Growth suppression induced by downregulation of E6-AP expression in human papillomavirus-positive cancer cell lines depends on p53. J Virol 79: 9296–9300.

    Article  CAS  Google Scholar 

  • Horner SM, DeFilippis RA, Manuelidis L, DiMaio D . (2004). Repression of the human papillomavirus E6 gene initiates p53-dependent, telomerase-independent senescence and apoptosis in HeLa cervical carcinoma cells. J Virol 78: 4063–4073.

    Article  CAS  Google Scholar 

  • Ichwan SJ, Yamada S, Sumrejkanchanakij P, Ibrahim-Auerkari E, Eto K, Ikeda MA . (2006). Defect in serine 46 phosphorylation of p53 contributes to acquisition of p53 resistance in oral squamous cell carcinoma cells. Oncogene 25: 1216–12124.

    Article  CAS  Google Scholar 

  • Ishida K, Nagahara H, Kogiso T, Aso T, Hayashi N, Akaike T . (2003). Cell adhesion aside from integrin system can abrogate anoikis in rat liver cells by down-regulation of FasL expression, not by activation of PI-3K/Akt and ERK signaling pathway. Biochem Biophys Res Commun 300: 201–208.

    Article  CAS  Google Scholar 

  • Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN . (2005). A novel NF-κB pathway involving IKKβ and p65/RelA Ser-536 phosphorylation results in p53 inhibition in the absence of NF-κB transcriptional activity. J Biol Chem 280: 10326–10332.

    Article  CAS  Google Scholar 

  • Kang KB, Zhu C, Yong SK, Gao Q, Wong MC . (2009). Enhanced sensitivity of celecoxib in human glioblastoma cells: induction of DNA damage leading to p53-dependent G1 cell cycle arrest and autophagy. Mol Cancer 8: 66.

    Article  Google Scholar 

  • Kastan MB . (2007). Wild-type p53: tumors can't stand it. Cell 128: 837–840.

    Article  CAS  Google Scholar 

  • Kawamata Y, Mitsuhashi A, Unno Y, Kado S, Shino Y, Uesugi K et al. (2002). HPV 16-E6-mediated degradation of intrinsic p53 is compensated by upregulation of p53 gene expression in normal cervical keratinocytes. Int J Oncol 21: 561–567.

    CAS  PubMed  Google Scholar 

  • Kuperwasser C, Pinkas J, Hurlbut GD, Naber SP, Jerry DJ . (2000). Cytoplasmic sequestration and functional repression of p53 in the mammary epithelium is reversed by hormonal treatment. Cancer Res 60: 2723–2729.

    CAS  PubMed  Google Scholar 

  • Lahiry L, Saha B, Chakraborty J, Adhikary A, Banerjee S, Das K et al. (2010). Theaflavins target Fas/caspase-8 and Akt/pBad pathways to induce apoptosis in p53-mutated human breast cancer cells. Carcinogenesis 31: 259–268.

    Article  CAS  Google Scholar 

  • Lahiry L, Saha B, Chakraborty J, Bhattacharyya S, Chattopadhyay S, Banerjee S et al. (2008). Contribution of p53-mediated Bax transactivation in theaflavin-induced mammary epithelial carcinoma cell apoptosis. Apoptosis 13: 771–781.

    Article  CAS  Google Scholar 

  • Lee HC, An S, Lee H, Woo SH, Jin HO, Seo SK et al. (2008). Activation of epidermal growth factor receptor and its downstream signaling pathway by nitric oxide in response to ionizing radiation. Mol Cancer Res 6: 996–1002.

    Article  CAS  Google Scholar 

  • Malanchi I, Caldeira S, Krützfeldt M, Giarre M, Alunni-Fabbroni M, Tommasino M . (2002). Identification of a novel activity of human papillomavirus type 16 E6 protein in deregulating the G1/S transition. Oncogene 21: 5665–5672.

    Article  CAS  Google Scholar 

  • Mestre JR, Subbaramaiah K, Sacks PG, Schantz SP, Tanabe T, Inoue H et al. (1997). Retinoids suppress epidermal growth factor-induced transcription of cyclooxygenase-2 in human oral squamous carcinoma cells. Cancer Res 57: 2890–2895.

    CAS  PubMed  Google Scholar 

  • Meulmeester E, Jochemsen AG . (2008). p53: a guide to apoptosis. Curr Cancer Drug Targets 8: 87–97.

    Article  CAS  Google Scholar 

  • Molina MA, Sitja-Arnau M, Lemoine MG, Frazier ML, Sinicrope FA . (1999). Increased cyclooxygenase-2 expression in human pancreatic carcinomas and cell lines: growth inhibition by nonsteroidal anti-inflammatory drugs. Cancer Res 59: 4356–4362.

    CAS  PubMed  Google Scholar 

  • Moody CA, Laimins LA . (2009). Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog 5: e1000605.

    Article  Google Scholar 

  • Munkarah A, Ali-Fehmi R . (2005). COX-2: a protein with an active role in gynecological cancers. Curr Opin Obstet Gynecol 17: 49–53.

    Article  Google Scholar 

  • Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV et al. (2003). Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348: 518–527.

    Article  Google Scholar 

  • Narayanan BA, Narayanan NK, Davis L, Nargi D . (2006). RNA interference-mediated cyclooxygenase-2 inhibition prevents prostate cancer cell growth and induces differentiation: modulation of neuronal protein synaptophysin, cyclin D1, and androgen receptor. Mol Cancer Ther 5: 1117–1125.

    Article  CAS  Google Scholar 

  • Park SW, Sung MW, Heo DS, Inoue H, Shim SH, Kim KH . (2005). Nitric oxide upregulates the cyclooxygenase-2 expression through the cAMP-response element in its promoter in several cancer cell lines. Oncogene 24: 6689–6698.

    Article  CAS  Google Scholar 

  • Perfettini JL, Castedo M, Nardacci R, Ciccosanti F, Boya P, Roumier T et al. (2005). Essential role of p53 phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope. J Exp Med 201: 279–289.

    Article  CAS  Google Scholar 

  • Prince ME, Ubell ML, Castro J, Ogawa H, Ogawa T, Narayan A et al. (2007). Tissue-preserving approach to extracting DNA from paraffin-embedded specimens using tissue microarray technology. Head Neck 29: 465–471.

    Article  Google Scholar 

  • Reddy BS, Hirose Y, Lubet R, Steele V, Kelloff G, Paulson S et al. (2000). Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis. Cancer Res 60: 293–297.

    CAS  PubMed  Google Scholar 

  • Romanczuk H, Villa LL, Schlegel R, Howley PM . (1991). The viral transcriptional regulatory region upstream of the E6 and E7 genes is a major determinant of the differential immortalization activities of human papillomavirus types 16 and 18. J Virol 65: 2739–2744.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Royds JA, Iacopetta B . (2006). p53 and disease: when the guardian angel fails. Cell Death Differ 13: 1017–1026.

    Article  CAS  Google Scholar 

  • Ryu HS, Chang KH, Yang HW, Kim MS, Kwon HC, Oh KS . (2000). High cyclooxygenase-2 expression in stage IB cervical cancer with lymph node metastasis or parametrial invasion. Gynecol Oncol 76: 320–325.

    Article  CAS  Google Scholar 

  • Saito S, Yamaguchi H, Higashimoto Y, Chao C, Xu Y, Fornace Jr AJ et al. (2003). Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J Biol Chem 278: 37536–37544.

    Article  CAS  Google Scholar 

  • Sato T, Nakajima H, Fujio K, Mori Y . (1997). Enhancement of prostaglandin E2 production by epidermal growth factor requires the coordinate activation of cytosolic phospholipase A2 and cyclooxygenase-2 in human squamous carcinoma A431 cells. Prostaglandins 53: 355–369.

    Article  CAS  Google Scholar 

  • Scheffner M, Huibregtse JM, Vierstra RD, Howley PM . (1993). Epidemiologic evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia. Cell 75: 495–505.

    Article  CAS  Google Scholar 

  • Sigal A, Rotter V . (2000). Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res 60: 6788–6793.

    CAS  Google Scholar 

  • Subbaramaiah K, Dannenberg AJ . (2007). Cyclooxygenase-2 transcription is regulated by human papillomavirus 16 E6 and E7 oncoproteins: evidence of a corepressor/coactivator exchange. Cancer Res 67: 3976–3985.

    Article  CAS  Google Scholar 

  • Swamy MV, Herzog CR, Rao CV . (2003). Inhibition of COX-2 in colon cancer cell lines by celecoxib increases the nuclear localization of active p53. Cancer Res 63: 5239–5242.

    CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  Google Scholar 

  • Walker C, Böttger S, Low B . (2006). Mortalin-based cytoplasmic sequestration of p53 in a nonmammalian cancer model. Am J Pathol 16: 1526–1530.

    Article  Google Scholar 

  • Wang W, Takimoto R, Rastinejad F, El-Deiry WS . (2003). Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol Cell Biol 23: 2171–2181.

    Article  CAS  Google Scholar 

  • Yasumoto S, Taniguchi A, Sohma K . (1991). Epidermal growth factor (EGF) elicits down-regulation of human papillomavirus type 16 (HPV-16) E6/E7 mRNA at the transcriptional level in an EGF-stimulated human keratinocyte cell line: functional role of EGF-responsive silencer in the HPV-16 long control region. J Virol 65: 2000–2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao CY, Szekely L, Bao W, Selivanova G . (2010). Rescue of p53 function by small-molecule RITA in cervical carcinoma by blocking E6-mediated degradation. Cancer Res 70: 3372–3381.

    Article  CAS  Google Scholar 

  • Zhao LY, Liao D . (2003). Sequestration of p53 in the cytoplasm by adenovirus type 12 E1B 55-kilodalton oncoprotein is required for inhibition of p53-mediated apoptosis. J Virol 77: 13171–13181.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr S Biswas, Department of Surgery, SSKM Hospital, Kolkata, for providing primary lesions of cervical cancer and normal cervical tissues. We are thankful to R Sarkar for editing the manuscript. Thanks are also due to U Ghosh and R Dutta for technical help. This work was supported by the grants from DST, CSIR and UGC, Govt of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Das.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, B., Adhikary, A., Ray, P. et al. Restoration of tumor suppressor p53 by differentially regulating pro- and anti-p53 networks in HPV-18-infected cervical cancer cells. Oncogene 31, 173–186 (2012). https://doi.org/10.1038/onc.2011.234

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.234

Keywords

This article is cited by

Search

Quick links