Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Overexpression of GalNAc-transferase GalNAc-T3 promotes pancreatic cancer cell growth

Abstract

O-linked glycans of secreted and membrane-bound proteins have an important role in the pathogenesis of pancreatic cancer by modulating immune responses, inflammation and tumorigenesis. A critical aspect of O-glycosylation, the position at which proteins are glycosylated with N-acetyl-galactosamine on serine and threonine residues, is regulated by the substrate specificity of UDP-GalNAc:polypeptide N-acetylgalactosaminyl-transferases (GalNAc-Ts). Thus, GalNAc-Ts regulate the first committed step in O-glycosylated protein biosynthesis, determine sites of O-glycosylation on proteins and are important for understanding normal and carcinoma-associated O-glycosylation. We have found that one of these enzymes, GalNAc-T3, is overexpressed in human pancreatic cancer tissues and suppression of GalNAc-T3 significantly attenuates the growth of pancreatic cancer cells in vitro and in vivo. In addition, suppression of GalNAc-T3 induces apoptosis of pancreatic cancer cells. Our results indicate that GalNAc-T3 is likely involved in pancreatic carcinogenesis. Modification of cellular glycosylation occurs in nearly all types of cancer as a result of alterations in the expression levels of glycosyltransferases. We report guanine the nucleotide-binding protein, α-transducing activity polypeptide-1 (GNAT1) as a possible substrate protein of GalNAc-T3. GalNAc-T3 is associated with O-glycosylation of GNAT1 and affects the subcellular distribution of GNAT1. Knocking down endogenous GNAT1 significantly suppresses the growth/survival of PDAC cells. Our results imply that GalNAc-T3 contributes to the function of O-glycosylated proteins and thereby affects the growth and survival of pancreatic cancer cells. Thus, substrate proteins of GalNAc-T3 should serve as important therapeutic targets for pancreatic cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Alenzi FQ . (2004). Links between apoptosis, proliferation and the cell cycle. Br J Biomed Sci 61: 1–4.

    Article  Google Scholar 

  • Andersen MH, Becker JC, Straten P . (2005). Regulators of apoptosis: suitable targets for immune therapy of cancer. Nat Rev Drug Discov 4: 399–409.

    Article  CAS  PubMed  Google Scholar 

  • Bennett EP, Hassan H, Clausen H . (1996). cDNA cloning and expression of a novel human UDP-N-acetyl-alpha-D-galactosamine. Polypeptide N-acetylgalactosaminyltransferase, GalNAc-T3. J Biol Chem 271: 17006–17012.

    Article  CAS  PubMed  Google Scholar 

  • Braga VM, Pemberton LF, Duhig T, Gendler SJ . (1992). Spatial and temporal expression of an epithelial mucin, Muc-1, during mouse development. Development 115: 427–437.

    CAS  PubMed  Google Scholar 

  • Brockhausen I . (1999). Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta 1473: 67–95.

    Article  CAS  PubMed  Google Scholar 

  • Cattoretti G, Becker M H, Key G, Duchrow M, Schluter C, Galle J et al. (1992). Monoclonal antibodies against recombinant parts of the Ki-67 antigen (MIB1 and MIB3) detect proliferating cells in microwave-processed formalin-fixed paraffin sections. J Pathol 168: 357–363.

    Article  CAS  PubMed  Google Scholar 

  • Fuster MM, Esko JD . (2005). The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5: 526–542.

    Article  CAS  PubMed  Google Scholar 

  • Gray JW, Dean PN . (1980). Display and analysis of flow cytometric data. Annu Rev Biophys Bioeng 9: 509–539.

    Article  CAS  PubMed  Google Scholar 

  • Hakomori S . (1989). Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv Cancer Res 52: 257–331.

    Article  CAS  PubMed  Google Scholar 

  • Hollingsworth MA, Swanson BJ . (2004). Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4: 45–60.

    Article  CAS  PubMed  Google Scholar 

  • Iwamura T, Katsuki T, Ide K . (1987). Establishment and characterization of a human pancreatic cancer cell line (SUIT-2) producing carcinoembryonic antigen and carbohydrate antigen 19-9. Jpn J Cancer Res 78: 54–62.

    CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ . (2009). Cancer statistics, 2009. CA Cancer J Clin 59: 225–249.

    Article  PubMed  Google Scholar 

  • Jensen ON . (2006). Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7: 391–403.

    Article  CAS  PubMed  Google Scholar 

  • Joshi SS, Kuszynski CA, Bagchi D . (2001). The cellular and molecular basis of health benefits of grape seed proanthocyanidin extract. Curr Pharm Biotechnol 2: 187–200.

    Article  CAS  PubMed  Google Scholar 

  • Kannagi R, Izawa M, Koike T, Miyazaki K, Kimura N . (2004). Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci 95: 377–384.

    Article  CAS  PubMed  Google Scholar 

  • Kondo A, Li W, Nakagawa T, Nakano M, Koyama N, Wang X et al. (2006). From glycomics to functional glycomics of sugar chains: identification of target proteins with functional changes using gene targeting mice and knock down cells of FUT8 as examples. Biochim Biophys Acta 1764: 1881–1889.

    Article  CAS  PubMed  Google Scholar 

  • Lee KM, Yasuda H, Hollingsworth MA, Ouellette MM . (2005). Notch2-positive progenitors with the intrinsic ability to give rise to pancreatic ductal cells. Lab Invest 85: 1003–1012.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Song L, Qin X . (2010). Glycan changes: cancer metastasis and anticancer vaccines. J Biosci 35: 665–673.

    Article  CAS  PubMed  Google Scholar 

  • Mayoral MA, Mayoral C, Meneses A, Villalvazo L, Guzman A, Espinosa B et al. (2008). Identification of galectin-3 and mucin-type O-glycans in breast cancer and its metastasis to brain. Cancer Invest 26: 615–623.

    Article  CAS  PubMed  Google Scholar 

  • Mellors A, Lo RY . (1995). O-sialoglycoprotease from Pasteurella haemolytica. Methods Enzymol 248: 728–740.

    Article  CAS  PubMed  Google Scholar 

  • Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E et al. (2006). Modulation of the Akt/Ras/Raf/MEK/ERK pathway by A(3) adenosine receptor. Purinergic Signal 2: 627–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moniaux N, Andrianifahanana M, Brand RE, Batra SK . (2004). Multiple roles of mucins in pancreatic cancer, a lethal and challenging malignancy. Br J Cancer 91: 1633–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomoto M, Izumi H, Ise T, Kato K, Takano H, Nagatani G et al. (1999). Structural basis for the regulation of UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyl transferase-3 gene expression in adenocarcinoma cells. Cancer Res 59: 6214–6222.

    CAS  PubMed  Google Scholar 

  • Reis CA, David L, Correa P, Carneiro F, de Bolos C, Garcia E et al. (1999). Intestinal metaplasia of human stomach displays distinct patterns of mucin (MUC1, MUC2, MUC5AC, and MUC6) expression. Cancer Res 59: 1003–1007.

    CAS  PubMed  Google Scholar 

  • Rosenzweig DH, Nair KS, Wei J, Wang Q, Garwin G, Saari JC et al. (2007). Subunit dissociation and diffusion determine the subcellular localization of rod and cone transducins. J Neurosci 27: 5484–5494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Avila L, McLaughlin SK, Wildman D, McKinnon PJ, Robichon A, Spickofsky N et al. (1995). Coupling of bitter receptor to phosphodiesterase through transducin in taste receptor cells. Nature 376: 80–85.

    Article  CAS  PubMed  Google Scholar 

  • Spiro RG . (2002). Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptides bonds. Glycobiology 12: 43R–56R.

    Article  CAS  PubMed  Google Scholar 

  • Sutherlin ME, Nishimori I, Caffrey T, Bennett EP, Hassan H, Mandel U et al. (1997). Expression of three UDP-N-acetyl-alpha-D-galactosamine:polypeptide GalNAc N-acetylgalactosaminyltransferases in adenocarcinoma cell lines. Cancer Res 57: 4744–4748.

    CAS  PubMed  Google Scholar 

  • Takenaka Y, Fukumori T, Raz A . (2004). Galectin-3 and metastasis. Glycoconj J 19: 543–549.

    Article  Google Scholar 

  • Telford WG, King LE, Fraker PJ . (1991). Evaluation of glucocorticoid-induced DNA fragmentation in mouse thymocytes by flow cytometry. Cell Prolif 24: 447–459.

    Article  CAS  PubMed  Google Scholar 

  • White T, Bennett EP, Takio K, Sorensen T, Bonding N, Clausen H . (1995). Purification and cDNA cloning of a human UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase. J Biol Chem 270: 24156–24165.

    Article  CAS  PubMed  Google Scholar 

  • Wray CJ, Ahmad SA, Matthews JB, Lowy AM . (2005). Surgery for pancreatic cancer: recent controversies and current practice. Gastroenterology 128: 1626–1641.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Michel Ouellette for providing the HPNE cells and Tamotsu Takeuchi for supporting pathological experiments and helpful discussion. We also thank Janice Taylor and James Talaska for excellent technical assistance. This work was funded by the NIH with grants to MAH (U01CA111294; R01CA057362).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Taniuchi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taniuchi, K., Cerny, R., Tanouchi, A. et al. Overexpression of GalNAc-transferase GalNAc-T3 promotes pancreatic cancer cell growth. Oncogene 30, 4843–4854 (2011). https://doi.org/10.1038/onc.2011.194

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.194

Keywords

This article is cited by

Search

Quick links