Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer

Abstract

The interaction between cancer cells and microenvironment has a critical role in tumor development and progression. Although microRNAs regulate all the major biological mechanisms, their influence on tumor microenvironment is largely unexplored. Here, we investigate the role of microRNAs in the tumor-supportive capacity of stromal cells. We demonstrated that miR-15 and miR-16 are downregulated in fibroblasts surrounding the prostate tumors of the majority of 23 patients analyzed. Such downregulation of miR-15 and miR-16 in cancer-associated fibroblasts (CAFs) promoted tumor growth and progression through the reduced post-transcriptional repression of Fgf-2 and its receptor Fgfr1, which act on both stromal and tumor cells to enhance cancer cell survival, proliferation and migration. Moreover, reconstitution of miR-15 and miR-16 impaired considerably the tumor-supportive capability of stromal cells in vitro and in vivo. Our data suggest a molecular circuitry in which miR-15 and miR-16 and their correlated targets cooperate to promote tumor expansion and invasiveness through the concurrent activity on stromal and cancer cells, thus providing further support to the development of therapies aimed at reconstituting miR-15 and miR-16 in advanced prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Acevedo VD, Ittmann M, Spencer DM . (2009). Paths of FGFR-driven tumorigenesis. Cell Cycle 8: 580–588.

    Article  CAS  PubMed  Google Scholar 

  • Ao M, Franco OE, Park D, Raman D, Williams K, Hayward SW et al. (2007). Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Res 67: 4244–4253.

    Article  CAS  PubMed  Google Scholar 

  • Aqeilan RI, Calin GA, Croce CM . (2010). miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 17: 215–220.

    Article  CAS  PubMed  Google Scholar 

  • Bandi N, Zbinden S, Gugger M, Arnold M, Kocher V, Hasan L et al. (2009). miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res 69: 5553–5559.

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya R, Nicoloso M, Arvizo R, Wang E, Cortez A, Rossi S et al. (2009). MiR-15a and MiR-16 control Bmi-1 expression in ovarian cancer. Cancer Res 69: 9090–9095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhowmick NA, Neilson EG, Moses HL . (2004). Stromal fibroblasts in cancer initiation and progression. Nature 432: 332–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonci D, Cittadini A, Latronico MV, Borello U, Aycock JK, Drusco A et al. (2003). Advanced’ generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo. Gene Ther 10: 630–636.

    Article  CAS  PubMed  Google Scholar 

  • Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L et al. (2008). The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14: 1271–1277.

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Croce CM . (2006). MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66: 7390–7394.

    Article  CAS  PubMed  Google Scholar 

  • Chung LW, Chang SM, Bell C, Zhau HE, Ro JY, von Eschenbach AC . (1989). Co-inoculation of tumorigenic rat prostate mesenchymal cells with non-tumorigenic epithelial cells results in the development of carcinosarcoma in syngeneic and athymic animals. Int J Cancer 43: 1179–1187.

    Article  CAS  PubMed  Google Scholar 

  • Chung LW, Cunha GR . (1983). Stromal-epithelial interactions: II. Regulation of prostatic growth by embryonic urogenital sinus mesenchyme. Prostate 4: 503–511.

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102: 13944–13949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronauer MV, Hittmair A, Eder IE, Hobisch A, Culig Z, Ramoner R et al. (1997). Basic fibroblast growth factor levels in cancer cells and in sera of patients suffering from proliferative disorders of the prostate. Prostate 31: 223–233.

    Article  CAS  PubMed  Google Scholar 

  • Cunha GR, Chung LW, Shannon JM, Taguchi O, Fujii H . (1983). Hormone-induced morphogenesis and growth: role of mesenchymal-epithelial interactions. Recent Prog Horm Res 39: 559–598.

    CAS  PubMed  Google Scholar 

  • De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gronberg H, Drake CG et al. (2007). Inflammation in prostate carcinogenesis. Nat Rev Cancer 7: 256–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efstathiou E, Logothetis CJ . (2010). A new therapy paradigm for prostate cancer founded on clinical observations. Clin Cancer Res 16: 1100–1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giri D, Ropiquet F, Ittmann M . (1999). Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clin Cancer Res 5: 1063–1071.

    CAS  PubMed  Google Scholar 

  • Hayward SW, Wang Y, Cao M, Hom YK, Zhang B, Grossfeld GD et al. (2001). Malignant transformation in a nontumorigenic human prostatic epithelial cell line. Cancer Res 61: 8135–8142.

    CAS  PubMed  Google Scholar 

  • He QM, Wei YQ, Tian L, Zhao X, Su JM, Yang L et al. (2003). Inhibition of tumor growth with a vaccine based on xenogeneic homologous fibroblast growth factor receptor-1 in mice. J Biol Chem 278: 21831–21836.

    Article  CAS  PubMed  Google Scholar 

  • Iliopoulos D, Hirsch HA, Struhl K . (2009). An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139: 693–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josson S, Matsuoka Y, Chung LW, Zhau HE, Wang R . (2010). Tumor-stroma co-evolution in prostate cancer progression and metastasis. Semin Cell Dev Biol 21: 26–32.

    Article  CAS  PubMed  Google Scholar 

  • Joyce JA, Pollard JW . (2009). Microenvironmental regulation of metastasis. Nat Rev Cancer 9: 239–252.

    Article  CAS  PubMed  Google Scholar 

  • Kalluri R, Weinberg RA . (2009). The basics of epithelial-mesenchymal transition. J Clin Invest 119: 1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaminski A, Hahne JC, Haddouti el M, Florin A, Wellmann A, Wernert N . (2006). Tumour-stroma interactions between metastatic prostate cancer cells and fibroblasts. Int J Mol Med 18: 941–950.

    CAS  PubMed  Google Scholar 

  • Karaa ZS, Iacovoni JS, Bastide A, Lacazette E, Touriol C, Prats H . (2009). The VEGF IRESes are differentially susceptible to translation inhibition by miR-16. RNA 15: 249–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T et al. (2010). The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17: 28–40.

    Article  CAS  PubMed  Google Scholar 

  • Konig A, Menzel T, Lynen S, Wrazel L, Rosen A, Al-Katib A et al. (1997). Basic fibroblast growth factor (bFGF) upregulates the expression of bcl-2 in B cell chronic lymphocytic leukemia cell lines resulting in delaying apoptosis. Leukemia 11: 258–265.

    Article  CAS  PubMed  Google Scholar 

  • Kwabi-Addo B, Ozen M, Ittmann M . (2004). The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer 11: 709–724.

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP . (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . (2003). Prediction of mammalian microRNA targets. Cell 115: 787–798.

    Article  CAS  PubMed  Google Scholar 

  • Menzel T, Rahman Z, Calleja E, White K, Wilson EL, Wieder R et al. (1996). Elevated intracellular level of basic fibroblast growth factor correlates with stage of chronic lymphocytic leukemia and is associated with resistance to fludarabine. Blood 87: 1056–1063.

    CAS  PubMed  Google Scholar 

  • Mohammadi M, McMahon G, Sun L, Tang C, Hirth P, Yeh BK et al. (1997). Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276: 955–960.

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto T, Chang CS, Li AK, Chodak GW . (1992). Basic fibroblast growth factor in human prostate cancer cells. Cancer Res 52: 571–577.

    CAS  PubMed  Google Scholar 

  • Navarro A, Diaz T, Gallardo E, Vinolas N, Marrades RM, Gel B et al. (2011). Prognostic implications of miR-16 expression levels in resected non-small-cell lung cancer. J Surg Oncol 103: 411–415.

    Article  CAS  PubMed  Google Scholar 

  • Polnaszek N, Kwabi-Addo B, Peterson LE, Ozen M, Greenberg NM, Ortega S et al. (2003). Fibroblast growth factor 2 promotes tumor progression in an autochthonous mouse model of prostate cancer. Cancer Res 63: 5754–5760.

    CAS  PubMed  Google Scholar 

  • Polyak K, Weinberg RA . (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9: 265–273.

    Article  CAS  PubMed  Google Scholar 

  • Risbridger GP, Taylor RA . (2008). Minireview: regulation of prostatic stem cells by stromal niche in health and disease. Endocrinology 149: 4303–4306.

    Article  CAS  PubMed  Google Scholar 

  • Roccaro AM, Sacco A, Thompson B, Leleu X, Azab AK, Azab F et al. (2009). MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma. Blood 113: 6669–6680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahni A, Simpson-Haidaris PJ, Sahni SK, Vaday GG, Francis CW . (2008). Fibrinogen synthesized by cancer cells augments the proliferative effect of fibroblast growth factor-2 (FGF-2). J Thromb Haemost 6: 176–183.

    Article  CAS  PubMed  Google Scholar 

  • Sezer O, Jakob C, Eucker J, Niemoller K, Gatz F, Wernecke K et al. (2001). Serum levels of the angiogenic cytokines basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) in multiple myeloma. Eur J Haematol 66: 83–88.

    Article  CAS  PubMed  Google Scholar 

  • Shin VY, Jin H, Ng EK, Cheng AS, Chong WW, Wong CY et al. (2011). NF-κB targets miR-16 and miR-21 in gastric cancer: involvement of prostaglandin E receptors. Carcinogenesis 32: 240–245.

    Article  CAS  PubMed  Google Scholar 

  • Smith JA, Madden T, Vijjeswarapu M, Newman RA . (2001). Inhibition of export of fibroblast growth factor-2 (FGF-2) from the prostate cancer cell lines PC3 and DU145 by Anvirzel and its cardiac glycoside component, oleandrin. Biochem Pharmacol 62: 469–472.

    Article  CAS  PubMed  Google Scholar 

  • Song S, Wientjes MG, Gan Y, Au JL . (2000). Fibroblast growth factors: an epigenetic mechanism of broad spectrum resistance to anticancer drugs. Proc Natl Acad Sci USA 97: 8658–8663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiery JP . (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442–454.

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA . (2009). Epithelial-mesenchymal transitions in development and disease. Cell 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  • Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, Lopez-Garcia MA et al. (2010). FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res 70: 2085–2094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuxhorn JA, Ayala GE, Smith MJ, Smith VC, Dang TD, Rowley DR . (2002). Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res 8: 2912–2923.

    CAS  PubMed  Google Scholar 

  • van Moorselaar RJ, Voest EE . (2002). Angiogenesis in prostate cancer: its role in disease progression and possible therapeutic approaches. Mol Cell Endocrinol 197: 239–250.

    Article  CAS  PubMed  Google Scholar 

  • Wernert N, Kaminski A, Haddouti el M, Hahne JC . (2007). Tumor-stroma interactions of metastatic prostate cancer cell lines: analyses using microarrays. Methods Mol Biol 382: 223–237.

    Article  CAS  PubMed  Google Scholar 

  • Winter SF, Acevedo VD, Gangula RD, Freeman KW, Spencer DM, Greenberg NM . (2007). Conditional activation of FGFR1 in the prostate epithelium induces angiogenesis with concomitant differential regulation of Ang-1 and Ang-2. Oncogene 26: 4897–4907.

    Article  CAS  PubMed  Google Scholar 

  • Wu HC, Hsieh JT, Gleave ME, Brown NM, Pathak S, Chung LW . (1994). Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int J Cancer 57: 406–412.

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Strand DW, Rowley DR . (2008). Fibroblast growth factor-2 mediates transforming growth factor-beta action in prostate cancer reactive stroma. Oncogene 27: 450–459.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Song S, Yang F, Au JL, Wientjes MG . (2001). Nontoxic doses of suramin enhance activity of doxorubicin in prostate tumors. J Pharmacol Exp Ther 299: 426–433.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Giuseppe Loreto and Maria Rita Pulvirenti for technical assistance. This work was supported by the Italian Health Ministry with ‘Under forty researchers 2007’and Italy-USA programs and by the Italian Association for Cancer Research (AIRC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R De Maria or D Bonci.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musumeci, M., Coppola, V., Addario, A. et al. Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 30, 4231–4242 (2011). https://doi.org/10.1038/onc.2011.140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.140

Keywords

Search

Quick links