Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Onconase mediated NFKβ downregulation in malignant pleural mesothelioma

Abstract

Treatment of malignant pleural mesothelioma (MPM) with Ranpirnase (Onconase) results in disruption of protein translation and cell apoptosis. We hypothesize that Onconase exerts an effect via downregulation of nuclear factor kappa B (NFKβ) by specific microRNAs (miRNAs) and that interference of this pathway could have implications for MPM resistance to chemotherapy. Three immortalized MPM cell lines (H2959, H2373 and H2591) were exposed to Onconase at 0–20 μg/ml. Cell counts were measured at 48 and 72 h. Gene expression in miRNA-enriched RNA was validated by reverse transcription–PCR (RT–PCR). The functional implications of miRNA expression were evaluated by transfecting miRNA mimics or inhibitors into MPM cell lines, and performing Matrigel invasion, cell proliferation, soft agar colony formation and scratch closure assays. Effects on NFKβ expression and downstream targets including ABC transporters, BCL-xl and IAP were assessed by RT–PCR and western blotting. Treatment with 20 μg/ml of Onconase significantly decreased cell count and invasion. Hsa-miR-17* was significantly upregulated and hsa-miR-30c was significantly downregulated by Onconase treatment in all cell lines. Forced expression of hsa-miR-17* mimic and hsa-miR-30c inhibitor each significantly decreased functional activity of Onconase in all assays. NFKB1 (p50) expression and downstream targets were also decreased with Onconase treatment, as well as with forced expression of miRNA mimic and inhibitors. Onconase treatment caused a significant decrease in cell proliferation, invasion and in expression of certain miRNAs. Recapitulation of the resultant miRNA expression pattern with hsa-miR-17* mimic and hsa-miR-30c inhibitor resulted in downregulation of NFKB1 and reduced malignant behavior in functional assays. Thus, Onconase likely exerts its antitumor effect through these miRNAs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Ambros V . (2004). The functions of animal microRNAs. Nature 431: 350–355.

    CAS  Google Scholar 

  • Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D . (2003). MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13: 807–818.

    Article  CAS  Google Scholar 

  • Ardelt B, Ardelt W, Darzynkiewicz Z . (2003). Cytotoxic ribonucleases and RNA interference (RNAi). Cell Cycle 2: 22–24.

    Article  CAS  Google Scholar 

  • Ardelt B, Juan G, Burfeind P, Salomon T, Wu JM, Hsieh TC et al. (2007). Onconase, an anti-tumor ribonuclease suppresses intracellular oxidative stress. Int J Oncol 31: 663–669.

    CAS  PubMed  Google Scholar 

  • Barnhart BC, Peter ME . (2003). The TNF receptor 1: a split personality complex. Cell 114: 148–150.

    Article  CAS  Google Scholar 

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  CAS  Google Scholar 

  • Beck AK, Pass HI, Carbone M, Yang H . (2008). Ranpirnase as a potential antitumor ribonuclease treatment for mesothelioma and other malignancies. Future Oncol 4: 341–349.

    Article  CAS  Google Scholar 

  • Cao X, Rodarte C, Zhang L, Morgan CD, Littlejohn J, Smythe WR . (2007). Bcl2/bcl-x(L) inhibitor engenders apoptosis and increases chemosensitivity in mesothelioma. Cancer Biol Ther 6: 246–252.

    Article  CAS  Google Scholar 

  • Carbone M, Albelda SM, Broaddus VC, Flores RM, Hillerdal G, Jaurand MC et al. (2007). Eighth international mesothelioma interest group. Oncogene 26: 6959–6967.

    Article  CAS  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33: e179.

    Article  Google Scholar 

  • Davidson AL, Dassa E, Orelle C, Chen J . (2008). Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72: 317–364.

    Article  CAS  Google Scholar 

  • Deptala A, Halicka HD, Ardelt B, Ardelt W, Mikulski SM, Shogen K et al. (1998). Potentiation of tumor necrosis factor induced apoptosis by onconase. Int J Oncol 13: 11–16.

    CAS  PubMed  Google Scholar 

  • Dickson KA, Haigis MC, Raines RT . (2005). Ribonuclease inhibitor: structure and function. Prog Nucleic Acid Res Mol Biol 80: 349–374.

    Article  CAS  Google Scholar 

  • Gillet JP, Efferth T, Remacle J . (2007). Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta 1775: 237–262.

    CAS  PubMed  Google Scholar 

  • Gilmore TD . (1999). The Rel/NF-kappaB signal transduction pathway: introduction. Oncogene 18: 6842–6844.

    Article  CAS  Google Scholar 

  • Gilmore TD . (2003). The Re1/NF-kappa B/I kappa B signal transduction pathway and cancer. Cancer Treat Res 115: 241–265.

    Article  CAS  Google Scholar 

  • Gilmore TD . (2006). Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25: 6680–6684.

    Article  CAS  Google Scholar 

  • Gordon GJ, Mani M, Mukhopadhyay L, Dong L, Yeap BY, Sugarbaker DJ et al. (2007). Inhibitor of apoptosis proteins are regulated by tumour necrosis factor-alpha in malignant pleural mesothelioma. J Pathol 211: 439–446.

    Article  CAS  Google Scholar 

  • Halicka DH, Pozarowski P, Ita M, Ardelt WJ, Mikulski SM, Shogen K et al. (2002). Enhancement of activation-induced apoptosis of lymphocytes by the cytotoxic ribonuclease onconase (Ranpirnase). Int J Oncol 21: 1245–1250.

    CAS  PubMed  Google Scholar 

  • Iordanov MS, Ryabinina OP, Wong J, Dinh TH, Newton DL, Rybak SM et al. (2000). Molecular determinants of apoptosis induced by the cytotoxic ribonuclease onconase: evidence for cytotoxic mechanisms different from inhibition of protein synthesis. Cancer Res 60: 1983–1994.

    CAS  PubMed  Google Scholar 

  • Jones PM, George AM . (2004). The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 61: 682–699.

    Article  CAS  Google Scholar 

  • Kasashima K, Nakamura Y, Kozu T . (2004). Altered expression profiles of microRNAs during TPA-induced differentiation of HL-60 cells. Biochem Biophys Res Commun 322: 403–410.

    Article  CAS  Google Scholar 

  • Kaufman AJ, Pass HI . (2008). Current concepts in malignant pleural mesothelioma. Expert Rev Anticancer Ther 8: 293–303.

    Article  CAS  Google Scholar 

  • Khokhar NZ, She Y, Rusch VW, Sirotnak FM . (2001). Experimental therapeutics with a new 10-deazaaminopterin in human mesothelioma: further improving efficacy through structural design, pharmacologic modulation at the level of MRP ATPases, and combined therapy with platinums. Clin Cancer Res 7: 3199–3205.

    CAS  PubMed  Google Scholar 

  • Kim DH, Kim EJ, Kalota A, Gewirtz AM, Glickson J, Shogen K et al. (2007). Possible mechanisms of improved radiation response by cytotoxic RNase, Onconase, on A549 human lung cancer xenografts of nude mice. Adv Exp Med Biol 599: 53–59.

    Article  Google Scholar 

  • Kobe B, Deisenhofer J . (1996). Mechanism of ribonuclease inhibition by ribonuclease inhibitor protein based on the crystal structure of its complex with ribonuclease. A J Mol Biol 264: 1028–1043.

    Article  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T . (2003). New microRNAs from mouse and human. RNA 9: 175–179.

    Article  CAS  Google Scholar 

  • Lee I . (2008). Ranpirnase (Onconase), a cytotoxic amphibian ribonuclease, manipulates tumour physiological parameters as a selective killer and a potential enhancer for chemotherapy and radiation in cancer therapy. Expert Opin Biol Ther 8: 813–827.

    Article  CAS  Google Scholar 

  • Lee I, Kim DH, Sunar U, Magnitsky S, Shogen K . (2007). The therapeutic mechanisms of ranpirnase-induced enhancement of radiation response on A549 human lung cancer. In vivo 21s: 721–728.

    Google Scholar 

  • Lee JE, Raines RT . (2008). Ribonucleases as novel chemotherapeutics: the ranpirnase example. BioDrugs 22: 53–58.

    Article  CAS  Google Scholar 

  • Littlejohn JE, Cao X, Miller SD, Ozvaran MK, Jupiter D, Zhang L et al. (2008). Bcl-xL antisense oligonucleotide and cisplatin combination therapy extends survival in SCID mice with established mesothelioma xenografts. Int J Cancer 123: 202–208.

    Article  CAS  Google Scholar 

  • Micheau O, Tschopp J . (2003). Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114: 181–190.

    Article  CAS  Google Scholar 

  • Mikulski SM, Viera A, Darzynkiewicz Z, Shogen K . (1992). Synergism between a novel amphibian oocyte ribonuclease and lovastatin in inducing cytostatic and cytotoxic effects in human lung and pancreatic carcinoma cell lines. Br J Cancer 66: 304–310.

    Article  CAS  Google Scholar 

  • O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.

    Article  CAS  Google Scholar 

  • Pass HI, Liu Z, Wali A, Bueno R, Land S, Lott D et al. (2004). Gene expression profiles predict survival and progression of pleural mesothelioma. Clin Cancer Res 10: 849–859.

    Article  CAS  Google Scholar 

  • Pass HI, Stevens EJ, Oie H, Tsokos MG, Abati AD, Fetsch PA et al. (1995). Characteristics of nine newly derived mesothelioma cell lines. Ann Thorac Surg 59: 835–844.

    Article  CAS  Google Scholar 

  • Pavlakis N, Vogelzang NJ . (2006). Ranpirnase--an antitumour ribonuclease: its potential role in malignant mesothelioma. Expert Opin Biol Ther 6: 391–399.

    Article  CAS  Google Scholar 

  • Porta C, Paglino C, Mutti L . (2008). Ranpirnase and its potential for the treatment of unresectable malignant mesothelioma. Biologics 2: 601–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reck M, Krzakowski M, Jastrzebski D et al. (2009). Randomized, multicenter phase III study of ranpirnase plus doxorubicin (DOX) versus DOX in patients with unresectable malignant mesothelioma (MM). J Clin Oncol 27(Suppl.):abstr 7507.

  • Robinson BW, Lake RA . (2005). Advances in malignant mesothelioma. N Engl J Med 353: 1591–1603.

    Article  CAS  Google Scholar 

  • Robledo R, Mossman B . (1999). Cellular and molecular mechanisms of asbestos-induced fibrosis. J Cell Physiol 180: 158–166.

    Article  CAS  Google Scholar 

  • Rybak SM, Pearson JW, Fogler WE, Volker K, Spence SE, Newton DL et al. (1996). Enhancement of vincristine cytotoxicity in drug-resistant cells by simultaneous treatment with onconase, an antitumor ribonuclease. J Natl Cancer Inst 88: 747–753.

    Article  CAS  Google Scholar 

  • Saxena SK, Sirdeshmukh R, Ardelt W, Mikulski SM, Shogen K, Youle RJ . (2002). Entry into cells and selective degradation of tRNAs by a cytotoxic member of the RNase A family. J Biol Chem 277: 15142–15146.

    Article  CAS  Google Scholar 

  • Shi Z, Parmar S, Peng XX, Shen T, Robey RW, Bates SE et al. (2009). The epidermal growth factor tyrosine kinase inhibitor AG1478 and erlotinib reverse ABCG2-mediated drug resistance. Oncol Rep 21: 483–489.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Z, Peng XX, Kim IW, Shukla S, Si QS, Robey RW et al. (2007). Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res 67: 11012–11020.

    Article  CAS  Google Scholar 

  • Shukla S, Robey RW, Bates SE, Ambudkar SV . (2009). Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab Dispos 37: 359–365.

    Article  CAS  Google Scholar 

  • Singh UP, Ardelt W, Saxena SK, Holloway DE, Vidunas E, Lee HS et al. (2007). Enzymatic and structural characterisation of amphinase, a novel cytotoxic ribonuclease from Rana pipiens oocytes. J Mol Biol 371: 93–111.

    Article  CAS  Google Scholar 

  • Soini Y, Jarvinen K, Kaarteenaho-Wiik R, Kinnula V . (2001). The expression of P-glycoprotein and multidrug resistance proteins 1 and 2 (MRP1 and MRP2) in human malignant mesothelioma. Ann Oncol 12: 1239–1245.

    Article  CAS  Google Scholar 

  • Soini Y, Kinnula V, Kaarteenaho-Wiik R, Kurttila E, Linnainmaa K, Paakko P . (1999). Apoptosis and expression of apoptosis regulating proteins bcl-2, mcl-1, bcl-X, and bax in malignant mesothelioma. Clin Cancer Res 5: 3508–3515.

    CAS  PubMed  Google Scholar 

  • Symanowski J, Vogelzang N, Zawel L, Atadja P, Pass H, Sharma S . (2009). A histone deacetylase inhibitor LBH589 downregulates XIAP in mesothelioma cell lines which is likely responsible for increased apoptosis with TRAIL. J Thorac Oncol 4: 149–160.

    Article  Google Scholar 

  • Tsai SY, Ardelt B, Hsieh TC, Darzynkiewicz Z, Shogen K, Wu JM . (2004). Treatment of Jurkat acute T-lymphocytic leukemia cells by onconase (Ranpirnase) is accompanied by an altered nucleocytoplasmic distribution and reduced expression of transcription factor NF-kappaB. Int J Oncol 25: 1745–1752.

    CAS  PubMed  Google Scholar 

  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP . (2007). Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3: 12.

    Article  Google Scholar 

  • Wang XJ, Reyes JL, Chua NH, Gaasterland T . (2004). Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5: R65.

    Article  Google Scholar 

  • Wu Y, Mikulski SM, Ardelt W, Rybak SM, Youle RJ . (1993). A cytotoxic ribonuclease. Study of the mechanism of onconase cytotoxicity. J Biol Chem 268: 10686–10693.

    CAS  PubMed  Google Scholar 

  • Yang H, Bocchetta M, Kroczynska B, Elmishad AG, Chen Y, Liu Z et al. (2006). TNF-alpha inhibits asbestos-induced cytotoxicity via a NF-kappaB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc Natl Acad Sci USA 103: 10397–10402.

    Article  CAS  Google Scholar 

  • Yang H, Testa JR, Carbone M . (2008). Mesothelioma epidemiology, carcinogenesis, and pathogenesis. Curr Treat Options Oncol 9: 147–157.

    Article  Google Scholar 

  • Zhao H, Ardelt B, Ardelt W, Shogen K, Darzynkiewicz Z . (2008). The cytotoxic ribonuclease onconase targets RNA interference (siRNA). Cell Cycle 7: 3258–3261.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ranpirnase was provided by AlphaCell Corporation, Paramus, NJ, USA. We also wish to acknowledge the generous support of Belluck and Fox, LPA for this project. Supported by NCI/NIH EDRN Biomarker Discovery Laboratory Grant UO1CA1111295 to Dr Pass and1PO1 CA114047-D1A1 to Dr Carbone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H I Pass.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goparaju, C., Blasberg, J., Volinia, S. et al. Onconase mediated NFKβ downregulation in malignant pleural mesothelioma. Oncogene 30, 2767–2777 (2011). https://doi.org/10.1038/onc.2010.643

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.643

Keywords

This article is cited by

Search

Quick links