Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transforming growth factor-β decreases the cancer-initiating cell population within diffuse-type gastric carcinoma cells

Abstract

Stem cells in normal tissues and cancer-initiating cells (CICs) are known to be enriched in side population (SP) cells. However, the factors responsible for the regulation of expression of ABCG2, involved in efflux of dyes, in SP cells have not been fully investigated. Here, we characterized the SP cells within diffuse-type gastric carcinoma, and examined the effects of transforming growth factor-β (TGF-β) on SP cells. Diffuse-type gastric carcinoma cells established from four independent patients universally contained SP cells between 1 and 4% of total cells, which displayed greater tumorigenicity than non-SP cells did. TGF-β repressed the transcription of ABCG2 through direct binding of Smad2/3 to its promoter/enhancer, and the number of SP cells and the tumor-forming ability of cancer cells were decreased by TGF-β, although ABCG2 is not directly involved in the tumor-forming ability of SP cells. Cancer cells from metastatic site expressed much higher levels of ABCG2 and included a greater percentage of SP cells than parental cancer cells did. SP cells are thus responsible for the progression of diffuse-type gastric carcinoma, and TGF-β negatively contributes to maintain the CICs within the cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bierie B, Moses HL . (2006). Tumour microenvironment: TGF-β: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6: 506–520.

    Article  CAS  PubMed  Google Scholar 

  • Bonnet D, Dick JE . (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730–737.

    CAS  PubMed  Google Scholar 

  • Crew KD, Neugut AI . (2006). Epidemiology of gastric cancer. World J Gastroenterol 12: 354–362.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dean M, Fojo T, Bates S . (2005). Tumor stem cells and drug resistance. Nat Rev Cancer 5: 275–284.

    Article  CAS  PubMed  Google Scholar 

  • Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. (2003). DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4: 3.

    Article  Google Scholar 

  • Derynck R, Zhang YE . (2003). Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425: 577–584.

    Article  CAS  PubMed  Google Scholar 

  • Ehata S, Hanyu A, Fujime M, Katsuno Y, Fukunaga E, Goto K et al. (2007a). Ki26894, a novel transforming growth factor-β type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci 98: 127–133.

    Article  CAS  PubMed  Google Scholar 

  • Ehata S, Hanyu A, Hayashi M, Aburatani H, Kato Y, Fujime M et al. (2007b). Transforming growth factor-β promotes survival of mammary carcinoma cells through induction of antiapoptotic transcription factor DEC1. Cancer Res 67: 9694–9703.

    Article  CAS  PubMed  Google Scholar 

  • Fujihara T, Sawada T, Hirakawa K, Chung YS, Yashiro M, Inoue T et al. (1998). Establishment of lymph node metastatic model for human gastric cancer in nude mice and analysis of factors associated with metastasis. Clin Exp Metastasis 16: 389–398.

    Article  CAS  PubMed  Google Scholar 

  • Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G et al. (1997). Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3: 1337–1345.

    Article  CAS  PubMed  Google Scholar 

  • Gradhand U, Kim RB . (2008). Pharmacogenomics of MRP transporters (ABCC1-5) and BCRP (ABCG2). Drug Metab Rev 40: 317–354.

    Article  CAS  PubMed  Google Scholar 

  • Grady WM, Markowitz SD . (2008) Derynck R, Miyazono K (ed). The TGF-β Family. Cold Spring Harbor Laboratory Press: USA, pp 889–937.

    Google Scholar 

  • Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E et al. (1996). DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271: 350–353.

    Article  CAS  PubMed  Google Scholar 

  • Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1: 313–323.

    Article  CAS  PubMed  Google Scholar 

  • Hohenberger P, Gretschel S . (2003). Gastric cancer. Lancet 362: 305–315.

    Article  PubMed  Google Scholar 

  • Inoue T, Chung YS, Yashiro M, Nishimura S, Hasuma T, Otani S et al. (1997). Transforming growth factor-β and hepatocyte growth factor produced by gastric fibroblasts stimulate the invasiveness of scirrhous gastric cancer cells. Jpn J Cancer Res 88: 152–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K . (2009). Autocrine TGF-β signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-boxfactors. Cell Stem Cell 5: 504–514.

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki H, Suda T . (2009). Cancer stem cells and their niche. Cancer Sci 100: 1166–1172.

    Article  CAS  PubMed  Google Scholar 

  • Katayama R, Koike S, Sato S, Sugimoto Y, Tsuruo T, Fujita N . (2009). Dofequidar fumarate sensitizes cancer stem–like side population cells to chemotherapeutic drugs by inhibiting ABCG2/BCRP-mediated drug export. Cancer Sci 100: 2060–2068.

    Article  CAS  PubMed  Google Scholar 

  • Kinugasa S, Abe S, Tachibana M, Hishikawa Y, Yoshimura H, Monden N et al. (1998). Overexpression of transforming growth factor-β1 in scirrhous carcinoma of the stomach correlates with decreased survival. Oncology 55: 582–587.

    Article  CAS  PubMed  Google Scholar 

  • Kiyono K, Suzuki HI, Morishita Y, Komuro A, Iwata C, Yashiro M et al. (2009). c-Ski overexpression promotes tumor growth and angiogenesis through inhibition of transforming growth factor-β signaling in diffuse-type gastric carcinoma. Cancer Sci 100: 1809–1816.

    Article  CAS  PubMed  Google Scholar 

  • Koinuma D, Tsutsumi S, Kamimura N, Taniguchi H, Miyazawa K, Sunamura M et al. (2009). Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor β signaling. Mol Cell Biol 291: 172–186.

    Article  Google Scholar 

  • Komuro A, Yashiro M, Iwata C, Morishita Y, Johansson E, Matsumoto Y et al. (2009). Diffuse-type gastric carcinoma: progression, angiogenesis, and transforming growth factor β signaling. J Natl Cancer Inst 101: 592–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laboisse CL, Augeron C, Potet F . (1981). Growth and differentiation of human gastrointestinal adenocarcinoma stem cells in soft agarose. Cancer Res 41: 310–315.

    CAS  PubMed  Google Scholar 

  • Lee J, Son MJ, Woolard K, Donin NM, Donin NM, Li A et al. (2008). Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 13: 69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobo NA, Shimono Y, Qian D, Clarke MF . (2007). The biology of cancer stem cells. Annu Rev Cell Dev Biol 23: 675–699.

    Article  CAS  PubMed  Google Scholar 

  • Markowitz S, Roberts A . (1996). Tumor suppressor activity of the TGF-β pathway in human cancers. Cytokine Growth Factor Rev 7: 93–102.

    Article  CAS  PubMed  Google Scholar 

  • Massagué J . (2008). TGF-β in Cancer. Cell 134: 215–230.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra L, Shetty K, Tang Y, Stuart A, Byers SW . (2005). The role of TGF-β and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene 24: 5775–5789.

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K . (2002). Two major Smad pathways in TGF-β superfamily signalling. Genes Cells 7: 1191–1204.

    Article  CAS  PubMed  Google Scholar 

  • Mizoi T, Ohtani H, Miyazono K, Miyazawa M, Matsuno S, Nagura H . (1993). Immunoelectron microscopic localization of transforming growth factor β1 and latent transforming growth factor β1 binding protein in human gastrointestinal carcinomas: qualitative difference between cancer cells and stromal cells. Cancer Res 53: 183–190.

    CAS  PubMed  Google Scholar 

  • Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y et al. (2010). TGF-β-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463: 676–680.

    Article  CAS  PubMed  Google Scholar 

  • Nishii T, Yashiro M, Shinto O, Sawada T, Ohira M, Hirakawa K . (2009). Cancer stem cell-like SP cells have a high adhesion ability to the peritoneum in gastric carcinoma. Cancer Sci 100: 1397–1402.

    Article  CAS  PubMed  Google Scholar 

  • Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG . (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res 65: 6207–6219.

    Article  CAS  PubMed  Google Scholar 

  • Peñuelas S, Anido J, Prieto-Sánchez RM, Folch G, Barba I, Cuartas I et al. (2009). TGF-β increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15: 315–327.

    Article  PubMed  Google Scholar 

  • Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G et al. (2006). Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444: 761–765.

    Article  CAS  PubMed  Google Scholar 

  • Rabindran SK, Ross DD, Doyle LA, Yang W, Greenberger LM . (2000). Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res 60: 47–50.

    CAS  PubMed  Google Scholar 

  • Scharenberg CW, Harkey MA, Torok-Storb B . (2002). The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99: 507–512.

    Article  CAS  PubMed  Google Scholar 

  • Sneddon JB, Zhen HH, Montgomery K, van de Rijn M, Tward AD, West R et al. (2006). Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. Proc Natl Acad Sci USA 103: 14842–14847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stingl J, Caldas C . (2007). Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat Rev Cancer 7: 791–799.

    Article  CAS  PubMed  Google Scholar 

  • Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R et al. (2009). Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27: 1006–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takemura S, Yashiro M, Sunami T, Tendo M, Hirakawa K . (2004). Novel models for human scirrhous gastric carcinoma in vivo. Cancer Sci 95: 893–900.

    Article  CAS  PubMed  Google Scholar 

  • Vagenas K, Spyropoulos C, Gavala V, Tsamandas AC . (2007). TGFβ1, TGFβ2, and TGFβ3 protein expression in gastric carcinomas: correlation with prognostics factors and patient survival. J Surg Res 139: 182–188.

    Article  CAS  PubMed  Google Scholar 

  • Velamakanni S, Wei SL, Janvilisri T, van Veen HW . (2007). ABCG transporters: structure, substrate specificities and physiological roles: a brief overview. J Bioenerg Biomembr 39: 465–471.

    Article  CAS  PubMed  Google Scholar 

  • Visvader JE, Lindeman GJ . (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8: 755–768.

    Article  CAS  PubMed  Google Scholar 

  • Wakefield LM, Roberts AB . (2002). TGF-β signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12: 22–29.

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RA . (1995). The retinoblastoma protein and cell cycle control. Cell 81: 323–330.

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Alman BA . (2008). Side population cells in human cancers. Cancer Lett 268: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Yanagihara K, Kamada N, Tsumuraya M, Amano F . (1993). Establishment and characterization of a human gastric scirrhous carcinoma cell line in serum-free chemically defined medium. Int J Cancer 54: 200–207.

    Article  CAS  PubMed  Google Scholar 

  • Yashiro M, Chung YS, Sowa M . (1994). Role of orthotopic fibroblasts in the development of scirrhous gastric carcinoma. Jpn J Cancer Res 85: 883–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yashiro M, Chung YS, Nishimura S, Inoue T, Sowa M . (1996). Peritoneal metastatic model for human scirrhous gastric carcinoma in nude mice. Clin Exp Metastasis 14: 43–54.

    Article  CAS  PubMed  Google Scholar 

  • Yashiro M, Yasuda K, Nishii T, Kaizaki R, Sawada T, Ohira M et al. (2009). Epigenetic regulation of the embryonic oncogene ERas in gastric cancer cells. Int J Oncol 35: 997–1003.

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Castagnino P, Assoian RK . (2008). ABCG2 expression and side population abundance regulated by a transforming growth factor β-directed epithelial-mesenchymal transition. Cancer Res 68: 800–807.

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7: 1028–1034.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr H Miyoshi (RIKEN) for the lentivirus vector system and Dr K Yanagihara (Yasuda Women's University) for HSC-43 cells. This study was supported by Grants-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and Grants-in-Aid for Young Scientists (Start-up) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Miyazono.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehata, S., Johansson, E., Katayama, R. et al. Transforming growth factor-β decreases the cancer-initiating cell population within diffuse-type gastric carcinoma cells. Oncogene 30, 1693–1705 (2011). https://doi.org/10.1038/onc.2010.546

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.546

Keywords

This article is cited by

Search

Quick links