Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Binding of pro-prion to filamin A: by design or an unfortunate blunder

Abstract

Over the last decades, cancer research has focused on tumor suppressor genes and oncogenes. Genes in other cellular pathways has received less attention. Between 0.5% to 1% of the mammalian genome encodes for proteins that are tethered on the cell membrane via a glycosylphosphatidylinositol (GPI)-anchor. The GPI modification pathway is complex and not completely understood. Prion (PrP), a GPI-anchored protein, is infamous for being the only normal protein that when misfolded can cause and transmit a deadly disease. Though widely expressed and highly conserved, little is known about the functions of PrP. Pancreatic cancer and melanoma cell lines express PrP. However, in these cell lines the PrP exists as a pro-PrP as defined by retaining its GPI anchor peptide signal sequence (GPI-PSS). Unexpectedly, the GPI-PSS of PrP has a filamin A (FLNA) binding motif and binds FLNA. FLNA is a cytolinker protein, and an integrator of cell mechanics and signaling. Binding of pro-PrP to FLNA disrupts the normal FLNA functions. Although normal pancreatic ductal cells lack PrP, about 40% of patients with pancreatic ductal cell adenocarcinoma express PrP in their cancers. These patients have significantly shorter survival time compared with patients whose cancers lack PrP. Pro-PrP is also detected in melanoma in situ but is undetectable in normal melanocyte, and invasive melanoma expresses more pro-PrP. In this review, we will discuss the underlying mechanisms by which binding of pro-PrP to FLNA disrupts normal cellular physiology and contributes to tumorigenesis, and the potential mechanisms that cause the accumulation of pro-PrP in cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abujiang P, Mori TJ, Takahashi T, Tanaka F, Kasyu I, Hitomi S et al. (1998). Loss of heterozygosity (LOH) at 17q and 14q in human lung cancers. Oncogene 17: 3029–3033.

    CAS  Google Scholar 

  • Adamson R, Jones AS, Field JK . (1994). Loss of heterozygosity studies on chromosome 17 in head and neck cancer using microsatellite markers. Oncogene 9: 2077–2082.

    CAS  Google Scholar 

  • Aguirre AJ, Brennan C, Bailey G, Sinha R, Feng B, Leo C et al. (2004). High-resolution characterization of the pancreatic adenocarcinoma genome. Proc Natl Acad Sci USA 101: 9067–9072.

    CAS  Google Scholar 

  • Akasaka T, van Leeuwen RL, Yoshinaga IG, Mihm Jr MC, Byers HR . (1995). Focal adhesion kinase (p125FAK) expression correlates with motility of human melanoma cell lines. J Invest Dermatol 105: 104–108.

    CAS  Google Scholar 

  • Alper O, Stetler-Stevenson WG, Harris LN, Leitner WW, Ozdemirli M, Hartmann D et al. (2009). Novel anti-filamin-A antibody detects a secreted variant of filamin-A in plasma from patients with breast carcinoma and high-grade astrocytoma. Cancer Sci 100: 1748–1756.

    CAS  Google Scholar 

  • Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, Fuchs CS, Petersen GM, Arslan AA et al. (2009). Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet 41: 986–990.

    CAS  Google Scholar 

  • Anantharam V, Kanthasamy A, Choi CJ, Martin DP, Latchoumycandane C, Richt JA et al. (2008). Opposing roles of prion protein in oxidative stress- and ER stress-induced apoptotic signaling. Free Radic Biol Med 45: 1530–1541.

    CAS  Google Scholar 

  • Antonacopoulou AG, Grivas PD, Skarlas L, Kalofonos M, Scopa CD, Kalofonos HP . (2008). POLR2F, ATP6V0A1 and PRNP expression in colorectal cancer: new molecules with prognostic significance? Anticancer Res 28: 1221–1227.

    CAS  Google Scholar 

  • Argos M, Kibriya MG, Jasmine F, Olopade OI, Su T, Hibshoosh H et al. (2008). Genomewide scan for loss of heterozygosity and chromosomal amplification in breast carcinoma using single-nucleotide polymorphism arrays. Cancer Genet Cytogenet 182: 69–74.

    CAS  Google Scholar 

  • Awata H, Huang C, Handlogten ME, Miller RT . (2001). Interaction of the calcium-sensing receptor and filamin, a potential scaffolding protein. J Biol Chem 276: 34871–34879.

    CAS  Google Scholar 

  • Bashyam MD, Bair R, Kim YH, Wang P, Hernandez-Boussard T, Karikari CA et al. (2005). Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia 7: 556–562.

    CAS  Google Scholar 

  • Basler K, Oesch B, Scott M, Westaway D, Walchli M, Groth DF et al. (1986). Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46: 417–428.

    CAS  Google Scholar 

  • Bedolla RG, Wang Y, Asuncion A, Chamie K, Siddiqui S, Mudryj MM et al. (2009). Nuclear versus cytoplasmic localization of filamin A in prostate cancer: immunohistochemical correlation with metastases. Clin Cancer Res 15: 788–796.

    CAS  Google Scholar 

  • Bellanger JM, Astier C, Sardet C, Ohta Y, Stossel TP, Debant A . (2000). The Rac1- and RhoG-specific GEF domain of Trio targets filamin to remodel cytoskeletal actin. Nat Cell Biol 2: 888–892.

    CAS  Google Scholar 

  • Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P et al. (2001). Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 98: 13790–13795.

    CAS  Google Scholar 

  • Bisgaard ML, Jager AC, Dalgaard P, Sondergaard JO, Rehfeld JF, Nielsen FC . (2001). Allelic loss of chromosome 2p21–16.3 is associated with reduced survival in sporadic colorectal cancer. Scand J Gastroenterol 36: 405–409.

    CAS  Google Scholar 

  • Bolton DC, McKinley MP, Prusiner SB . (1982). Identification of a protein that purifies with the scrapie prion. Science 218: 1309–1311.

    CAS  Google Scholar 

  • Borbiev T, Verin AD, Shi S, Liu F, Garcia JG . (2001). Regulation of endothelial cell barrier function by calcium/calmodulin-dependent protein kinase II. Am J Physiol Lung Cell Mol Physiol 280: L983–L990.

    CAS  Google Scholar 

  • Boschman CR, Stryker S, Reddy JK, Rao MS . (1994). Expression of p53 protein in precursor lesions and adenocarcinoma of human pancreas. Am J Pathol 145: 1291–1295.

    CAS  Google Scholar 

  • Bouffard D, Duncan LM, Howard CA, Mihm Jr MC, Byers HR . (1994). Actin-binding protein expression in benign and malignant melanocytic proliferations. Hum Pathol 25: 709–714.

    CAS  Google Scholar 

  • Bounhar Y, Zhang Y, Goodyer CG, LeBlanc A . (2001). Prion protein protects human neurons against Bax-mediated apoptosis. J Biol Chem 276: 39145–39149.

    CAS  Google Scholar 

  • Bredel M, Bredel C, Juric D, Harsh GR, Vogel H, Recht LD et al. (2005). Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res 65: 8679–8689.

    CAS  Google Scholar 

  • Brosh R, Rotter V . (2009). When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9: 701–713.

    CAS  Google Scholar 

  • Brown KM, Macgregor S, Montgomery GW, Craig DW, Zhao ZZ, Iyadurai K et al. (2008). Common sequence variants on 20q11.22 confer melanoma susceptibility. Nat Genet 40: 838–840.

    CAS  Google Scholar 

  • Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M et al. (1993). Mice devoid of PrP are resistant to scrapie. Cell 73: 1339–1347.

    CAS  Google Scholar 

  • Byers HR, Etoh T, Doherty JR, Sober AJ, Mihm Jr MC . (1991). Cell migration and actin organization in cultured human primary, recurrent cutaneous and metastatic melanoma. Time-lapse and image analysis. Am J Pathol 139: 423–435.

    CAS  Google Scholar 

  • Calderwood DA, Huttenlocher A, Kiosses WB, Rose DM, Woodside DG, Schwartz MA et al. (2001). Increased filamin binding to beta-integrin cytoplasmic domains inhibits cell migration. Nat Cell Biol 3: 1060–1068.

    CAS  Google Scholar 

  • Campana V, Sarnataro D, Zurzolo C . (2005). The highways and byways of prion protein trafficking. Trends Cell Biol 15: 102–111.

    CAS  Google Scholar 

  • Castro P, Creighton CJ, Ozen M, Berel D, Mims MP, Ittmann M . (2009). Genomic profiling of prostate cancers from African American men. Neoplasia 11: 305–312.

    CAS  Google Scholar 

  • Caughey B, Brown K, Raymond GJ, Katzenstein GE, Thresher W . (1994). Binding of the protease-sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and congo red. J Virol 68: 2135–2141.

    CAS  Google Scholar 

  • Chen R, Knez JJ, Merrick WC, Medof ME . (2001). Comparative efficiencies of C-terminal signals of native glycophosphatidylinositol (GPI)-anchored proproteins in conferring GPI-anchoring. J Cell Biochem 84: 68–83.

    CAS  Google Scholar 

  • Chiarini LB, Freitas AR, Zanata SM, Brentani RR, Martins VR, Linden R . (2002). Cellular prion protein transduces neuroprotective signals. EMBO J 21: 3317–3326.

    CAS  Google Scholar 

  • Choi YW, Bae SM, Kim YW, Lee HN, Kim YW, Park TC et al. (2007). Gene expression profiles in squamous cell cervical carcinoma using array-based comparative genomic hybridization analysis. Int J Gynecol Cancer 17: 687–696.

    Google Scholar 

  • Creutzfeldt HG . (1920). Ãœber eine eigenartige herdförmige Erkrankung des Zentralnervensystems. Vorläufige Mitteilung. Zeitschrift für die gesamte Neurologie und Psychiatrie 57: 1–18.

    Google Scholar 

  • Cukier IH, Li Y, Lee JM . (2007). Cyclin B1/Cdk1 binds and phosphorylates Filamin A and regulates its ability to cross-link actin. FEBS Lett 581: 1661–1672.

    CAS  Google Scholar 

  • Cunningham CC, Gorlin JB, Kwiatkowski DJ, Hartwig JH, Janmey PA, Byers HR et al. (1992). Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255: 325–327.

    CAS  Google Scholar 

  • Daley D, Lewis S, Platzer P, MacMillen M, Willis J, Elston RC et al. (2008). Identification of susceptibility genes for cancer in a genome-wide scan: results from the colon neoplasia sibling study. Am J Hum Genet 82: 723–736.

    CAS  Google Scholar 

  • Davies P, Brown DR . (2008). The chemistry of copper binding to PrP: is there sufficient evidence to elucidate a role for copper in protein function? Biochem J 410: 237–244.

    CAS  Google Scholar 

  • Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB . (2008). Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18: 54–61.

    CAS  Google Scholar 

  • Devilee P, Cornelisse CJ, Kuipers-Dijkshoorn N, Jonker C, Pearson PL . (1990). Loss of heterozygosity on 17p in human breast carcinomas: defining the smallest common region of deletion. Cytogenet Cell Genet 53: 52–54.

    CAS  Google Scholar 

  • Dimova I, Orsetti B, Negre V, Rouge C, Ursule L, Lasorsa L et al. (2009). Genomic markers for ovarian cancer at chromosomes 1, 8 and 17 revealed by array CGH analysis. Tumori 95: 357–366.

    CAS  Google Scholar 

  • Dohna M, Reincke M, Mincheva A, Allolio B, Solinas-Toldo S, Lichter P . (2000). Adrenocortical carcinoma is characterized by a high frequency of chromosomal gains and high-level amplifications. Genes Chromosomes Cancer 28: 145–152.

    CAS  Google Scholar 

  • Donne DG, Viles JH, Groth D, Mehlhorn I, James TL, Cohen FE et al. (1997). Structure of the recombinant full-length hamster prion protein PrP(29-231): the N terminus is highly flexible. Proc Natl Acad Sci USA 94: 13452–13457.

    CAS  Google Scholar 

  • Douglas EJ, Fiegler H, Rowan A, Halford S, Bicknell DC, Bodmer W et al. (2004). Array comparative genomic hybridization analysis of colorectal cancer cell lines and primary carcinomas. Cancer Res 64: 4817–4825.

    CAS  Google Scholar 

  • Edenhofer F, Rieger R, Famulok M, Wendler W, Weiss S, Winnacker EL . (1996). Prion protein PrPc interacts with molecular chaperones of the Hsp60 family. J Virol 70: 4724–4728.

    CAS  Google Scholar 

  • Fang X, Zheng P, Tang J, Liu Y . (2010). CD24: from A to Z. Cell Mol Immunol 7: 100–103.

    CAS  Google Scholar 

  • Fanjul M, Alvarez L, Hollande E . (2007). Expression and subcellular localization of a 35-kDa carbonic anhydrase IV in a human pancreatic ductal cell line (Capan-1). J Histochem Cytochem 55: 783–794.

    CAS  Google Scholar 

  • Fanjul M, Alvarez L, Salvador C, Gmyr V, Kerr-Conte J, Pattou F et al. (2004). Evidence for a membrane carbonic anhydrase IV anchored by its C-terminal peptide in normal human pancreatic ductal cells. Histochem Cell Biol 121: 91–99.

    CAS  Google Scholar 

  • Feng S, Resendiz JC, Lu X, Kroll MH . (2003). Filamin A binding to the cytoplasmic tail of glycoprotein Ibalpha regulates von Willebrand factor-induced platelet activation. Blood 102: 2122–2129.

    CAS  Google Scholar 

  • Feng Y, Chen MH, Moskowitz IP, Mendonza AM, Vidali L, Nakamura F et al. (2006). Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis. Proc Natl Acad Sci USA 103: 19836–19841.

    CAS  Google Scholar 

  • Feng Y, Walsh CA . (2004). The many faces of filamin: a versatile molecular scaffold for cell motility and signalling. Nat Cell Biol 6: 1034–1038.

    CAS  Google Scholar 

  • Fiori JL, Zhu TN, O'Connell MP, Hoek KS, Indig FE, Frank BP et al. (2009). Filamin A modulates kinase activation and intracellular trafficking of epidermal growth factor receptors in human melanoma cells. Endocrinology 150: 2551–2560.

    CAS  Google Scholar 

  • Fox JW, Lamperti ED, Eksioglu YZ, Hong SE, Feng Y, Graham DA et al. (1998). Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21: 1315–1325.

    CAS  Google Scholar 

  • Franscini N, El Gedaily A, Matthey U, Franitza S, Sy MS, Burkle A et al. (2006). Prion protein in milk. PLoS One 1: e71.

    Google Scholar 

  • Frierson Jr HF, El-Naggar AK, Welsh JB, Sapinoso LM, Su AI, Cheng J et al. (2002). Large scale molecular analysis identifies genes with altered expression in salivary adenoid cystic carcinoma. Am J Pathol 161: 1315–1323.

    CAS  Google Scholar 

  • Fujita Y, Sakakura C, Shimomura K, Nakanishi M, Yasuoka R, Aragane H et al. (2003). Chromosome arm 20q gains and other genomic alterations in esophageal squamous cell carcinoma, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization. Hepatogastroenterology 50: 1857–1863.

    CAS  Google Scholar 

  • Gabus C, Auxilien S, Pechoux C, Dormont D, Swietnicki W, Morillas M et al. (2001). The prion protein has DNA strand transfer properties similar to retroviral nucleocapsid protein. J Mol Biol 307: 1011–1021.

    CAS  Google Scholar 

  • Gajdusek DC . (2008). Review. Kuru and its contribution to medicine. Philos Trans R Soc Lond B Biol Sci 363: 3697–3700.

    Google Scholar 

  • Gajdusek DC, Zigas V . (1957). Degenerative disease of the central nervous system in New Guinea; the endemic occurrence of kuru in the native population. N Engl J Med 257: 974–978.

    CAS  Google Scholar 

  • Garcea G, Neal CP, Pattenden CJ, Steward WP, Berry DP . (2005). Molecular prognostic markers in pancreatic cancer: a systematic review. Eur J Cancer 41: 2213–2236.

    CAS  Google Scholar 

  • Ginsberg MH, Partridge A, Shattil SJ . (2005). Integrin regulation. Curr Opin Cell Biol 17: 509–516.

    CAS  Google Scholar 

  • Glogauer M, Arora P, Chou D, Janmey PA, Downey GP, McCulloch CA . (1998). The role of actin-binding protein 280 in integrin-dependent mechanoprotection. J Biol Chem 273: 1689–1698.

    CAS  Google Scholar 

  • Goeze A, Schluns K, Wolf G, Thasler Z, Petersen S, Petersen I . (2002). Chromosomal imbalances of primary and metastatic lung adenocarcinomas. J Pathol 196: 8–16.

    Google Scholar 

  • Goldfarb LG, Brown P, Cervenakova L, Gajdusek DC . (1994). Genetic analysis of Creutzfeldt-Jakob disease and related disorders. Philos Trans R Soc Lond B Biol Sci 343: 379–384.

    CAS  Google Scholar 

  • Goldmann WH . (2002). p56(lck) Controls phosphorylation of filamin (ABP-280) and regulates focal adhesion kinase (pp125(FAK)). Cell Biol Int 26: 567–571.

    CAS  Google Scholar 

  • Gorlin JB, Yamin R, Egan S, Stewart M, Stossel TP, Kwiatkowski DJ et al. (1990). Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring. J Cell Biol 111: 1089–1105.

    CAS  Google Scholar 

  • Greig JR . (1950). Scrapie in sheep. J Comp Pathol 60: 263–266.

    CAS  Google Scholar 

  • Guan XY, Meltzer PS, Dalton WS, Trent JM . (1994). Identification of cryptic sites of DNA sequence amplification in human breast cancer by chromosome microdissection. Nat Genet 8: 155–161.

    CAS  Google Scholar 

  • Guan Y, Hata N, Kuga D, Yoshimoto K, Mizoguchi M, Shono T et al. (2008). Narrowing of the regions of allelic losses of chromosome 1p36 in meningioma tissues by an improved SSCP analysis. Int J Cancer 122: 1820–1826.

    CAS  Google Scholar 

  • Guedj N, Zhan Q, Perigny M, Rautou PE, Degos F, Belghiti J et al. (2009). Comparative protein expression profiles of hilar and peripheral hepatic cholangiocarcinomas. J Hepatol 51: 93–101.

    CAS  Google Scholar 

  • Guled M, Myllykangas S, Frierson Jr HF, Mills SE, Knuutila S, Stelow EB . (2008). Array comparative genomic hybridization analysis of olfactory neuroblastoma. Mod Pathol 21: 770–778.

    CAS  Google Scholar 

  • Guo Z, Linn JF, Wu G, Anzick SL, Eisenberger CF, Halachmi S et al. (2004). CDC91L1 (PIG-U) is a newly discovered oncogene in human bladder cancer. Nat Med 10: 374–381.

    CAS  Google Scholar 

  • Han H, Bearss DJ, Browne LW, Calaluce R, Nagle RB, Von Hoff DD . (2002). Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res 62: 2890–2896.

    CAS  Google Scholar 

  • Hart AW, Morgan JE, Schneider J, West K, McKie L, Bhattacharya S et al. (2006). Cardiac malformations and midline skeletal defects in mice lacking filamin A. Hum Mol Genet 15: 2457–2467.

    CAS  Google Scholar 

  • He HJ, Kole S, Kwon YK, Crow MT, Bernier M . (2003). Interaction of filamin A with the insulin receptor alters insulin-dependent activation of the mitogen-activated protein kinase pathway. J Biol Chem 278: 27096–27104.

    CAS  Google Scholar 

  • He X, Li Y, Schembri-King J, Jakes S, Hayashi J . (2000). Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein. Mol Immunol 37: 603–612.

    CAS  Google Scholar 

  • Hegde RS, Rane NS . (2003). Prion protein trafficking and the development of neurodegeneration. Trends Neurosci 26: 337–339.

    CAS  Google Scholar 

  • Helfand BT, Loeb S, Meeks JJ, Fought AJ, Kan D, Catalona WJ . (2009). Pathological outcomes associated with the 17q prostate cancer risk variants. J Urol 181: 2502–2507.

    Google Scholar 

  • Herlyn M . (2006). Molecular targets in melanoma: strategies and challenges for diagnosis and therapy. Int J Cancer 118: 523–526.

    CAS  Google Scholar 

  • Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA . (2006). Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20: 1218–1249.

    CAS  Google Scholar 

  • Hidaka S, Yasutake T, Kondo M, Takeshita H, Yano H, Haseba M et al. (2003). Frequent gains of 20q and losses of 18q are associated with lymph node metastasis in intestinal-type gastric cancer. Anticancer Res 23: 3353–3357.

    CAS  Google Scholar 

  • Hirai M, Yoshida S, Kashiwagi H, Kawamura T, Ishikawa T, Kaneko M et al. (1999). 1q23 gain is associated with progressive neuroblastoma resistant to aggressive treatment. Genes Chromosomes Cancer 25: 261–269.

    CAS  Google Scholar 

  • Ho JC, Cheung ST, Patil M, Chen X, Fan ST . (2006). Increased expression of glycosyl-phosphatidylinositol anchor attachment protein 1 (GPAA1) is associated with gene amplification in hepatocellular carcinoma. Int J Cancer 119: 1330–1337.

    CAS  Google Scholar 

  • Hoggard N, Hey Y, Brintnell B, James L, Jones D, Mitchell E et al. (1995). Identification and cloning in yeast artificial chromosomes of a region of elevated loss of heterozygosity on chromosome 1p31.1 in human breast cancer. Genomics 30: 233–243.

    CAS  Google Scholar 

  • Hruban RH, Adsay NV, Albores-Saavedra J, Anver MR, Biankin AV, Boivin GP et al. (2006). Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res 66: 95–106.

    CAS  Google Scholar 

  • Hruban RH, Zamboni G . (2009). Pancreatic cancer. Special issue—insights and controversies in pancreatic pathology. Arch Pathol Lab Med 133: 347–349.

    Google Scholar 

  • Hsiao K, Prusiner SB . (1990). Inherited human prion diseases. Neurology 40: 1820–1827.

    CAS  Google Scholar 

  • Hulsebos TJ, Bijleveld EH, Oskam NT, Westerveld A, Leenstra S, Hogendoorn PC et al. (1997). Malignant astrocytoma-derived region of common amplification in chromosomal band 17p12 is frequently amplified in high-grade osteosarcomas. Genes Chromosomes Cancer 18: 279–285.

    CAS  Google Scholar 

  • Hynes RO . (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–687.

    CAS  Google Scholar 

  • Ikezawa H . (2002). Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol Pharm Bull 25: 409–417.

    CAS  Google Scholar 

  • Ishihara T, Tsuda H, Hotta A, Kozaki K, Yoshida A, Noh JY et al. (2008). ITCH is a putative target for a novel 20q11.22 amplification detected in anaplastic thyroid carcinoma cells by array-based comparative genomic hybridization. Cancer Sci 99: 1940–1949.

    CAS  Google Scholar 

  • Ishkanian AS, Mallof CA, Ho J, Meng A, Albert M, Syed A et al. (2009). High-resolution array CGH identifies novel regions of genomic alteration in intermediate-risk prostate cancer. Prostate 69: 1091–1100.

    CAS  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ . (2007). Cancer statistics, 2007. CA Cancer J Clin 57: 43–66.

    Google Scholar 

  • Jiang WW, Zahurak M, Zhou ZT, Park HL, Guo ZM, Wu GJ et al. (2007). Alterations of GPI transamidase subunits in head and neck squamous carcinoma. Mol Cancer 6: 74.

    Google Scholar 

  • Johnson-Pais TL, Nellissery MJ, Ammerman DG, Pathmanathan D, Bhatia P, Buller CL et al. (2003). Determination of a minimal region of loss of heterozygosity on chromosome 18q21.33 in osteosarcoma. Int J Cancer 105: 285–288.

    CAS  Google Scholar 

  • Jonson T, Gorunova L, Dawiskiba S, Andren-Sandberg A, Stenman G, ten Dijke P et al. (1999). Molecular analyses of the 15q and 18q SMAD genes in pancreatic cancer. Genes Chromosomes Cancer 24: 62–71.

    CAS  Google Scholar 

  • Kamochi N, Nakashima M, Aoki S, Uchihashi K, Sugihara H, Toda S et al. (2008). Irradiated fibroblast-induced bystander effects on invasive growth of squamous cell carcinoma under cancer-stromal cell interaction. Cancer Sci 99: 2417–2427.

    CAS  Google Scholar 

  • Katoh H, Shibata T, Kokubu A, Ojima H, Loukopoulos P, Kanai Y et al. (2005). Genetic profile of hepatocellular carcinoma revealed by array-based comparative genomic hybridization: identification of genetic indicators to predict patient outcome. J Hepatol 43: 863–874.

    CAS  Google Scholar 

  • Kayed H, Kleeff J, Keleg S, Siang X, Penzel R, Giese T et al. (2006). Correlation of glypican-1 expression with TGF-beta, BMP, and activin receptors in pancreatic ductal adenocarcinoma. Int J Oncol 29: 1139–1148.

    CAS  Google Scholar 

  • Keshamouni VG, Michailidis G, Grasso CS, Anthwal S, Strahler JR, Walker A et al. (2006). Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype. J Proteome Res 5: 1143–1154.

    CAS  Google Scholar 

  • Keshet GI, Bar-Peled O, Yaffe D, Nudel U, Gabizon R . (2000). The cellular prion protein colocalizes with the dystroglycan complex in the brain. J Neurochem 75: 1889–1897.

    CAS  Google Scholar 

  • Kiema T, Lad Y, Jiang P, Oxley CL, Baldassarre M, Wegener KL et al. (2006). The molecular basis of filamin binding to integrins and competition with talin. Mol Cell 21: 337–347.

    CAS  Google Scholar 

  • Kim H, Sengupta A, Glogauer M, McCulloch CA . (2008). Filamin A regulates cell spreading and survival via beta1 integrins. Exp Cell Res 314: 834–846.

    CAS  Google Scholar 

  • Kim JH, Dhanasekaran SM, Mehra R, Tomlins SA, Gu W, Yu J et al. (2007a). Integrative analysis of genomic aberrations associated with prostate cancer progression. Cancer Res 67: 8229–8239.

    CAS  Google Scholar 

  • Kim SW, Kim JW, Kim YT, Kim JH, Kim S, Yoon BS et al. (2007b). Analysis of chromosomal changes in serous ovarian carcinoma using high-resolution array comparative genomic hybridization: potential predictive markers of chemoresistant disease. Genes Chromosomes Cancer 46: 1–9.

    CAS  Google Scholar 

  • Kimmelman AC, Hezel AF, Aguirre AJ, Zheng H, Paik JH, Ying H et al. (2008). Genomic alterations link Rho family of GTPases to the highly invasive phenotype of pancreas cancer. Proc Natl Acad Sci USA 105: 19372–19377.

    CAS  Google Scholar 

  • Kinoshita T, Fujita M, Maeda Y . (2008). Biosynthesis, remodelling and functions of mammalian GPI-anchored proteins: recent progress. J Biochem 144: 287–294.

    CAS  Google Scholar 

  • Kley RA, Hellenbroich Y, van der Ven PF, Furst DO, Huebner A, Bruchertseifer V et al. (2007). Clinical and morphological phenotype of the filamin myopathy: a study of 31 German patients. Brain 130: 3250–3264.

    Google Scholar 

  • Krakow D, Robertson SP, King LM, Morgan T, Sebald ET, Bertolotto C et al. (2004). Mutations in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis. Nat Genet 36: 405–410.

    CAS  Google Scholar 

  • Kresse SH, Berner JM, Meza-Zepeda LA, Gregory SG, Kuo WL, Gray JW et al. (2005). Mapping and characterization of the amplicon near APOA2 in 1q23 in human sarcomas by FISH and array CGH. Mol Cancer 4: 39.

    Google Scholar 

  • Kuwahara C, Takeuchi AM, Nishimura T, Haraguchi K, Kubosaki A, Matsumoto Y et al. (1999). Prions prevent neuronal cell-line death. Nature 400: 225–226.

    CAS  Google Scholar 

  • Lad Y, Kiema T, Jiang P, Pentikainen OT, Coles CH, Campbell ID et al. (2007). Structure of three tandem filamin domains reveals auto-inhibition of ligand binding. EMBO J 26: 3993–4004.

    CAS  Google Scholar 

  • Larramendy ML, Lushnikova T, Bjorkqvist AM, Wistuba II, Virmani AK, Shivapurkar N et al. (2000). Comparative genomic hybridization reveals complex genetic changes in primary breast cancer tumors and their cell lines. Cancer Genet Cytogenet 119: 132–138.

    CAS  Google Scholar 

  • Leonardi A, Ellinger-Ziefelbauer H, Franzoso G, Brown K, Siebenlist U . (2000). Physical and functional interaction of filamin (actin-binding protein-280) and tumor necrosis factor receptor-associated factor 2. J Biol Chem 275: 271–278.

    CAS  Google Scholar 

  • Letessier A, Sircoulomb F, Ginestier C, Cervera N, Monville F, Gelsi-Boyer V et al. (2006). Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers. BMC Cancer 6: 245.

    Google Scholar 

  • Li C, Wong P, Pan T, Xiao F, Yin S, Chang B et al. (2007). Normal cellular prion protein is a ligand of selectins: binding requires Le(X) but is inhibited by sLe(X). Biochem J 406: 333–341.

    CAS  Google Scholar 

  • Li C, Yu S, Nakamura F, Yin S, Xu J, Petrolla AA et al. (2009). Binding of pro-prion to filamin A disrupts cytoskeleton and correlates with poor prognosis in pancreatic cancer. J Clin Invest 119: 2725–2736.

    CAS  Google Scholar 

  • Li C, Yu S, Nakamura F, Pentikainen O, Singh N, Yin S et al. (2010). Pro-prion binds filamin A facilitating its interaction with integrin β1 and contributes to melanomagenesis. J Biol Chem (e-pub ahead of print 21 July 2010).

  • Li D, Xie K, Wolff R, Abbruzzese JL . (2004). Pancreatic cancer. Lancet 363: 1049–1057.

    CAS  Google Scholar 

  • Li M, Li C, Weingarten P, Bunzow JR, Grandy DK, Zhou QY . (2002). Association of dopamine D(3) receptors with actin-binding protein 280 (ABP-280). Biochem Pharmacol 63: 859–863.

    CAS  Google Scholar 

  • Li R, Liu T, Wong BS, Pan T, Morillas M, Swietnicki W et al. (2000). Identification of an epitope in the C terminus of normal prion protein whose expression is modulated by binding events in the N terminus. J Mol Biol 301: 567–573.

    CAS  Google Scholar 

  • Li R, Liu T, Yoshihiro F, Trat-Lehmann M, Obrenovich M, Kuekrek H et al. (2003). On the same cell type GPI-anchored normal cellular prion and DAF protein exhibit different biological properties. Biochem Biophys Res Com 303: 446–451.

    CAS  Google Scholar 

  • Li X, Lee NK, Ye YW, Waber PG, Schweitzer C, Cheng QC et al. (1994). Allelic loss at chromosomes 3p, 8p, 13q, and 17p associated with poor prognosis in head and neck cancer. J Natl Cancer Inst 86: 1524–1529.

    CAS  Google Scholar 

  • Liang J, Ge F, Guo C, Luo G, Wang X, Han G et al. (2009). Inhibition of PI3K/Akt partially leads to the inhibition of PrP(C)-induced drug resistance in gastric cancer cells. FEBS J 276: 685–694.

    CAS  Google Scholar 

  • Lin M, Smith LT, Smiraglia DJ, Kazhiyur-Mannar R, Lang JC, Schuller DE et al. (2006). DNA copy number gains in head and neck squamous cell carcinoma. Oncogene 25: 1424–1433.

    CAS  Google Scholar 

  • Lin R, Karpa K, Kabbani N, Goldman-Rakic P, Levenson R . (2001). Dopamine D2 and D3 receptors are linked to the actin cytoskeleton via interaction with filamin A. Proc Natl Acad Sci USA 98: 5258–5263.

    CAS  Google Scholar 

  • Lindholm PM, Salmenkivi K, Vauhkonen H, Nicholson AG, Anttila S, Kinnula VL et al. (2007). Gene copy number analysis in malignant pleural mesothelioma using oligonucleotide array CGH. Cytogenet Genome Res 119: 46–52.

    CAS  Google Scholar 

  • Liu ET . (2008). Functional genomics of cancer. Curr Opin Genet Dev 18: 251–256.

    CAS  Google Scholar 

  • Liu G, Thomas L, Warren RA, Enns CA, Cunningham CC, Hartwig JH et al. (1997). Cytoskeletal protein ABP-280 directs the intracellular trafficking of furin and modulates proprotein processing in the endocytic pathway. J Cell Biol 139: 1719–1733.

    CAS  Google Scholar 

  • Logsdon CD, Simeone DM, Binkley C, Arumugam T, Greenson JK, Giordano TJ et al. (2003). Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res 63: 2649–2657.

    CAS  Google Scholar 

  • Loo DT, Kanner SB, Aruffo A . (1998). Filamin binds to the cytoplasmic domain of the beta1-integrin. Identification of amino acids responsible for this interaction. J Biol Chem 273: 23304–23312.

    CAS  Google Scholar 

  • Loukopoulos P, Shibata T, Katoh H, Kokubu A, Sakamoto M, Yamazaki K et al. (2007). Genome-wide array-based comparative genomic hybridization analysis of pancreatic adenocarcinoma: identification of genetic indicators that predict patient outcome. Cancer Sci 98: 392–400.

    CAS  Google Scholar 

  • Loy CJ, Sim KS, Yong EL . (2003). Filamin-A fragment localizes to the nucleus to regulate androgen receptor and coactivator functions. Proc Natl Acad Sci USA 100: 4562–4567.

    CAS  Google Scholar 

  • Lu J, Sheen V . (2005). Periventricular heterotopia. Epilepsy Behav 7: 143–149.

    Google Scholar 

  • Luo BH, Carman CV, Springer TA . (2007). Structural basis of integrin regulation and signaling. Annu Rev Immunol 25: 619–647.

    CAS  Google Scholar 

  • Ma J, Gao M, Lu Y, Feng X, Zhang J, Lin D et al. (2006). Gain of 1q25–32, 12q23–24.3, and 17q12–22 facilitates tumorigenesis and progression of human squamous cell lung cancer. J Pathol 210: 205–213.

    CAS  Google Scholar 

  • Maeda Y, Ashida H, Kinoshita T . (2006). CHO glycosylation mutants: GPI anchor. Methods Enzymol 416: 182–205.

    CAS  Google Scholar 

  • Mahfoud R, Garmy N, Maresca M, Yahi N, Puigserver A, Fantini J . (2002). Identification of a common sphingolipid-binding domainin Alzheimer, prion, and HIV-1 proteins. J Biol Chem 277: 11292–11296.

    CAS  Google Scholar 

  • Mani K, Cheng F, Havsmark B, Jonsson M, Belting M, Fransson LA . (2003). Prion, amyloid beta-derived Cu(II) ions, or free Zn(II) ions support S-nitroso-dependent autocleavage of glypican-1 heparan sulfate. J Biol Chem 278: 38956–38965.

    CAS  Google Scholar 

  • Maqani N, Belkhiri A, Moskaluk C, Knuutila S, Dar AA, El-Rifai W . (2006). Molecular dissection of 17q12 amplicon in upper gastrointestinal adenocarcinomas. Mol Cancer Res 4: 449–455.

    CAS  Google Scholar 

  • Mastracci TL, Shadeo A, Colby SM, Tuck AB, O'Malley FP, Bull SB et al. (2006). Genomic alterations in lobular neoplasia: a microarray comparative genomic hybridization signature for early neoplastic proliferationin the breast. Genes Chromosomes Cancer 45: 1007–1017.

    CAS  Google Scholar 

  • Mhawech-Fauceglia P, Odunsi K, Dim D, Nowak N, Lele S, Cheney RT et al. (2008). Array-comparative genomic hybridization analysis of primary endometrial and ovarian high-grade neuroendocrine carcinoma associated with adenocarcinoma: mystery resolved? Int J Gynecol Pathol 27: 539–546.

    Google Scholar 

  • Millhauser GL . (2007). Copper and the prion protein: methods, structures, function, and disease. Annu Rev Phys Chem 58: 299–320.

    CAS  Google Scholar 

  • Miozzo M, Dalpra L, Riva P, Volonta M, Macciardi F, Pericotti S et al. (2000). A tumor suppressor locus in familial and sporadic chordoma maps to 1p36. Int J Cancer 87: 68–72.

    CAS  Google Scholar 

  • Miyoshi E, Moriwaki K, Nakagawa T . (2008). Biological function of fucosylation in cancer biology. J Biochem 143: 725–729.

    CAS  Google Scholar 

  • Morel E, Fouquet S, Strup-Perrot C, Pichol Thievend C, Petit C, Loew D et al. (2008). The cellular prion protein PrP(c) is involved in the proliferation of epithelial cells and in the distribution of junction-associated proteins. PLoS One 3: e3000.

    Google Scholar 

  • Mouillet-Richard S, Ermonval M, Chebassier C, Laplanche JL, Lehmann S, Launay JM et al. (2000). Signal transduction through prion protein. Science 289: 1925–1928.

    CAS  Google Scholar 

  • Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S et al. (2009). Mutant p53 drives invasion by promoting integrin recycling. Cell 139: 1327–1341.

    Google Scholar 

  • Myllykangas S, Junnila S, Kokkola A, Autio R, Scheinin I, Kiviluoto T et al. (2008). Integrated gene copy number and expression microarray analysis of gastric cancer highlights potential target genes. Int J Cancer 123: 817–825.

    CAS  Google Scholar 

  • Naghibalhossaini F, Yoder AD, Tobi M, Stanners CP . (2007). Evolution of a tumorigenic property conferred by glycophosphatidyl-inositol membrane anchors of carcinoembryonic antigen gene family members during the primate radiation. Mol Biol Cell 18: 1366–1374.

    CAS  Google Scholar 

  • Nagpal JK, Dasgupta S, Jadallah S, Chae YK, Ratovitski EA, Toubaji A et al. (2008). Profiling the expression pattern of GPI transamidase complex subunits in human cancer. Mod Pathol 21: 979–991.

    CAS  Google Scholar 

  • Nakamura F, Osborn TM, Hartemink CA, Hartwig JH, Stossel TP . (2007). Structural basis of filamin A functions. J Cell Biol 179: 1011–1025.

    CAS  Google Scholar 

  • Nakamura F, Pudas R, Heikkinen O, Permi P, Kilpelainen I, Munday AD et al. (2006). The structure of the GPIb-filamin A complex. Blood 107: 1925–1932.

    CAS  Google Scholar 

  • Nakanishi H, Matsumoto S, Iwakawa R, Kohno T, Suzuki K, Tsuta K et al. (2009). Whole genome comparison of allelic imbalance between noninvasive and invasive small-sized lung adenocarcinomas. Cancer Res 69: 1615–1623.

    CAS  Google Scholar 

  • Narang HK, Dagdanova A, Xie Z, Yang Q, Chen SG . (2005). Sensitive detection of prion protein in human urine. Exp Biol Med (Maywood) 230: 343–349.

    CAS  Google Scholar 

  • Narayan G, Bourdon V, Chaganti S, Arias-Pulido H, Nandula SV, Rao PH et al. (2007). Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes. Genes Chromosomes Cancer 46: 373–384.

    CAS  Google Scholar 

  • Naylor TL, Greshock J, Wang Y, Colligon T, Yu QC, Clemmer V et al. (2005). High resolution genomic analysis of sporadic breast cancer using array-based comparative genomic hybridization. Breast Cancer Res 7: R1186–R1198.

    CAS  Google Scholar 

  • Nicholson TB, Stanners CP . (2007). Identification of a novel functional specificity signal within the GPI anchor signal sequence of carcinoembryonic antigen. J Cell Biol 177: 211–218.

    CAS  Google Scholar 

  • Nomachi A, Nishita M, Inaba D, Enomoto M, Hamasaki M, Minami Y . (2008). Receptor tyrosine kinase Ror2 mediates Wnt5a-induced polarized cell migration by activating c-Jun N-terminal kinase via actin-binding protein filamin A. J Biol Chem 283: 27973–27981.

    CAS  Google Scholar 

  • Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF . (2010). Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140: 49–61.

    CAS  Google Scholar 

  • Notterman DA, Alon U, Sierk AJ, Levine AJ . (2001). Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Res 61: 3124–3130.

    CAS  Google Scholar 

  • Nowak NJ, Gaile D, Conroy JM, McQuaid D, Cowell J, Carter R et al. (2005). Genome-wide aberrations in pancreatic adenocarcinoma. Cancer Genet Cytogenet 161: 36–50.

    CAS  Google Scholar 

  • O'Connell MP, Fiori JL, Baugher KM, Indig FE, French AD, Camilli TC et al. (2009). Wnt5A activates the calpain-mediated cleavage of filamin A. J Invest Dermatol 129: 1782–1789.

    CAS  Google Scholar 

  • Ohta Y, Suzuki N, Nakamura S, Hartwig JH, Stossel TP . (1999). The small GTPase RalA targets filamin to induce filopodia. Proc Natl Acad Sci USA 96: 2122–2128.

    CAS  Google Scholar 

  • Onoprishvili I, Andria ML, Kramer HK, Ancevska-Taneva N, Hiller JM, Simon EJ . (2003). Interaction between the mu opioid receptor and filamin A is involved in receptor regulation and trafficking. Mol Pharmacol 64: 1092–1100.

    CAS  Google Scholar 

  • Ottenhof NA, Milne AN, Morsink FH, Drillenburg P, Ten Kate FJ, Maitra A et al. (2009). Pancreatic intraepithelial neoplasia and pancreatic tumorigenesis: of mice and men. Arch Pathol Lab Med 133: 375–381.

    Google Scholar 

  • Paitel E, Sunyach C, Alves da Costa C, Bourdon JC, Vincent B, Checler F . (2004). Primary cultured neurons devoid of cellular prion display lower responsiveness to staurosporine through the control of p53 at both transcriptional and post-transcriptional levels. J Biol Chem 279: 612–618.

    CAS  Google Scholar 

  • Paladino S, Lebreton S, Tivodar S, Campana V, Tempre R, Zurzolo C . (2008). Different GPI-attachment signals affect the oligomerisation of GPI-anchored proteins and their apical sorting. J Cell Sci 121: 4001–4007.

    CAS  Google Scholar 

  • Pan T, Wong BS, Liu T, Li R, Petersen RB, Sy MS . (2002). Cell-surface prion protein interacts with glycosaminoglycans. Biochem J 368: 81–90.

    CAS  Google Scholar 

  • Peris K, Keller G, Chimenti S, Amantea A, Kerl H, Hofler H . (1995). Microsatellite instability and loss of heterozygosity in melanoma. J Invest Dermatol 105: 625–628.

    CAS  Google Scholar 

  • Prusiner SB . (1982). Novel proteinaceous infectious particles cause scrapie. Science 216: 136–144.

    CAS  Google Scholar 

  • Prusiner SB . (1998). Prions. Proc Nat Acad Sci USA 95: 13363–13383.

    CAS  Google Scholar 

  • Ravid D, Chuderland D, Landsman L, Lavie Y, Reich R, Liscovitch M . (2008). Filamin A is a novel caveolin-1-dependent target in IGF-I-stimulated cancer cell migration. Exp Cell Res 314: 2762–2773.

    CAS  Google Scholar 

  • Robertson SP . (2005). Filamin A: phenotypic diversity. Curr Opin Genet Dev 15: 301–307.

    CAS  Google Scholar 

  • Sahar S, Sassone-Corsi P . (2009). Metabolism and cancer: the circadian clock connection. Nat Rev Cancer 9: 886–896.

    CAS  Google Scholar 

  • Saito S, Ghosh M, Morita K, Hirano T, Miwa M, Todoroki T . (2006). The genetic differences between gallbladder and bile duct cancer cell lines. Oncol Rep 16: 949–956.

    CAS  Google Scholar 

  • Sanchez-Carbayo M, Socci ND, Lozano J, Saint F, Cordon-Cardo C . (2006). Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J Clin Oncol 24: 778–789.

    CAS  Google Scholar 

  • Sasaki A, Masuda Y, Ohta Y, Ikeda K, Watanabe K . (2001). Filamin associates with Smads and regulates transforming growth factor-beta signaling. J Biol Chem 276: 17871–17877.

    CAS  Google Scholar 

  • Schmitt-Ulms G, Hansen K, Liu J, Cowdrey C, Yang J, DeArmond SJ et al. (2004). Time-controlled transcardiac perfusion cross-linking for the study of protein interactions in complex tissues. Nat Biotechnol 22: 724–731.

    CAS  Google Scholar 

  • Schmitt-Ulms G, Legname G, Baldwin MA, Ball HL, Bradon N, Bosque PJ et al. (2001). Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol 314: 1209–1225.

    CAS  Google Scholar 

  • Scotto L, Narayan G, Nandula SV, Arias-Pulido H, Subramaniyam S, Schneider A et al. (2008). Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: potential role in progression. Genes Chromosomes Cancer 47: 755–765.

    CAS  Google Scholar 

  • Screaton RA, DeMarte L, Draber P, Stanners CP . (2000). The specificity for the differentiation blocking activity of carcinoembryonic antigen resides in its glycophosphatidyl-inositol anchor. J Cell Biol 150: 613–626.

    CAS  Google Scholar 

  • Seck T, Baron R, Horne WC . (2003). Binding of filamin to the C-terminal tail of the calcitonin receptor controls recycling. J Biol Chem 278: 10408–10416.

    CAS  Google Scholar 

  • Selvarajah S, Yoshimoto M, Ludkovski O, Park PC, Bayani J, Thorner P et al. (2008). Genomic signatures of chromosomal instability and osteosarcoma progression detected by high resolution array CGH and interphase FISH. Cytogenet Genome Res 122: 5–15.

    CAS  Google Scholar 

  • Sharma CP, Ezzell RM, Arnaout MA . (1995). Direct interaction of filamin (ABP-280) with the beta 2-integrin subunit CD18. J Immunol 154: 3461–3470.

    CAS  Google Scholar 

  • Sharom FJ, Lehto MT . (2002). Glycosylphosphatidylinositol-anchored proteins: structure, function, and cleavage by phosphatidylinositol-specific phospholipase C. Biochem Cell Biol 80: 535–549.

    CAS  Google Scholar 

  • Shi C, Daniels JA, Hruban RH . (2008). Molecular characterization of pancreatic neoplasms. Adv Anat Pathol 15: 185–195.

    CAS  Google Scholar 

  • Shivapurkar N, Sood S, Wistuba II, Virmani AK, Maitra A, Milchgrub S et al. (1999). Multiple regions of chromosome 4 demonstrating allelic losses in breast carcinomas. Cancer Res 59: 3576–3580.

    CAS  Google Scholar 

  • Sibley K, Bell S, Knowles MA . (2000). Redefining a critical region of LOH on 4p16.3 in bladder cancer. Genes Chromosomes Cancer 29: 378–379.

    CAS  Google Scholar 

  • Simoneau S, Haik S, Leucht C, Dormont D, Deslys JP, Weiss S et al. (2003). Different isoforms of the non-integrin laminin receptor are present in mouse brain and bind PrP. Biol Chem 384: 243–246.

    CAS  Google Scholar 

  • Skawran B, Steinemann D, Weigmann A, Flemming P, Becker T, Flik J et al. (2008). Gene expression profiling in hepatocellular carcinoma: upregulation of genes in amplified chromosome regions. Mod Pathol 21: 505–516.

    CAS  Google Scholar 

  • Spielhaupter C, Schatzl HM . (2001). PrPC directly interacts with proteins involved in signaling pathways. J Biol Chem 276: 44604–44612.

    CAS  Google Scholar 

  • Stanford JL, FitzGerald LM, McDonnell SK, Carlson EE, McIntosh LM, Deutsch K et al. (2009). Dense genome-wide SNP linkage scan in 301 hereditary prostate cancer families identifies multiple regions with suggestive evidence for linkage. Hum Mol Genet 18: 1839–1848.

    CAS  Google Scholar 

  • Steele AD, Zhou Z, Jackson WS, Zhu C, Auluck P, Moskowitz MA et al. (2009). Context dependent neuroprotective properties of prion protein (PrP). Prion 3: 240–249.

    CAS  Google Scholar 

  • Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M et al. (2001). Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2: 138–145.

    CAS  Google Scholar 

  • Sun J, Purcell L, Gao Z, Isaacs SD, Wiley KE, Hsu FC et al. (2008). Association between sequence variants at 17q12 and 17q24.3 and prostate cancer risk in European and African Americans. Prostate 68: 691–697.

    CAS  Google Scholar 

  • Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S et al. (2006). Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 9: 287–300.

    CAS  Google Scholar 

  • Sverdlov M, Shinin V, Place AT, Castellon M, Minshall RD . (2009). Filamin A regulates caveolae internalization and trafficking in endothelial cells. Mol Biol Cell 20: 4531–4540.

    CAS  Google Scholar 

  • Taylor DR, Hooper NM . (2006). The prion protein and lipid rafts. Mol Membr Biol 23: 89–99.

    CAS  Google Scholar 

  • Tenesa A, Farrington SM, Prendergast JG, Porteous ME, Walker M, Haq N et al. (2008). Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet 40: 631–637.

    CAS  Google Scholar 

  • Thelin WR, Chen Y, Gentzsch M, Kreda SM, Sallee JL, Scarlett CO et al. (2007). Direct interaction with filamins modulates the stability and plasma membrane expression of CFTR. J Clin Invest 117: 364–374.

    CAS  Google Scholar 

  • Thomassen M, Tan Q, Kruse TA . (2009). Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis. Breast Cancer Res Treat 113: 239–249.

    Google Scholar 

  • Tigges U, Koch B, Wissing J, Jockusch BM, Ziegler WH . (2003). The F-actin cross-linking and focal adhesion protein filamin A is a ligand and in vivo substrate for protein kinase C alpha. J Biol Chem 278: 23561–23569.

    CAS  Google Scholar 

  • Tomar A, Schlaepfer DD . (2009). Focal adhesion kinase: switching between GAPs and GEFs in the regulation of cell motility. Curr Opin Cell Biol 21: 676–683.

    CAS  Google Scholar 

  • Torring N, Borre M, Sorensen KD, Andersen CL, Wiuf C, Orntoft TF . (2007). Genome-wide analysis of allelic imbalance in prostate cancer using the Affymetrix 50 K SNP mapping array. Br J Cancer 96: 499–506.

    CAS  Google Scholar 

  • Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E et al. (2005). A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4: 1920–1932.

    CAS  Google Scholar 

  • Vadlamudi RK, Li F, Adam L, Nguyen D, Ohta Y, Stossel TP et al. (2002). Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol 4: 681–690.

    CAS  Google Scholar 

  • van Dartel M, Cornelissen PW, Redeker S, Tarkkanen M, Knuutila S, Hogendoorn PC et al. (2002). Amplification of 17p11.2 approximately p12, including PMP22, TOP3A, and MAPK7, in high-grade osteosarcoma. Cancer Genet Cytogenet 139: 91–96.

    CAS  Google Scholar 

  • van Duin M, van Marion R, Vissers KJ, Hop WC, Dinjens WN, Tilanus HW et al. (2007). High-resolution array comparative genomic hybridization of chromosome 8q: evaluation of putative progression markers for gastroesophageal junction adenocarcinomas. Cytogenet Genome Res 118: 130–137.

    CAS  Google Scholar 

  • Vanden Bempt I, Vanhentenrijk V, Drijkoningen M, De Wolf-Peeters C . (2006). Comparative expressed sequence hybridization reveals differential gene expression in morphological breast cancer subtypes. J Pathol 208: 486–494.

    CAS  Google Scholar 

  • Waneck GL, Stein ME, Flavell RA . (1988). Conversion of a PI-anchored protein to an integral membrane protein by a single amino acid mutation. Science 241: 697–699.

    CAS  Google Scholar 

  • Wang G, Zhao Y, Liu X, Wang L, Wu C, Zhang W et al. (2001). Allelic loss and gain, but not genomic instability, as the major somatic mutation in primary hepatocellular carcinoma. Genes Chromosomes Cancer 31: 221–227.

    Google Scholar 

  • Wang Y, Kreisberg JI, Bedolla RG, Mikhailova M, deVere White RW, Ghosh PM . (2007). A 90 kDa fragment of filamin A promotes Casodex-induced growth inhibition in Casodex-resistant androgen receptor positive C4-2 prostate cancer cells. Oncogene 26: 6061–6070.

    CAS  Google Scholar 

  • Wescott MP, Rustgi AK . (2008). Pancreatiic cancer: translating lessons from mouse models and hereditary syndromes. Cancer Prev Res (Phila Pa) 1: 503–506.

    CAS  Google Scholar 

  • White GR, Varley JM, Heighway J . (1998). Isolation and characterization of a human homologue of the latrophilin gene from aregion of 1p31.1 implicated in breast cancer. Oncogene 17: 3513–3519.

    CAS  Google Scholar 

  • Williamson D, Pikovski I, Cranmer SL, Mangin P, Mistry N, Domagala T et al. (2002). Interaction between platelet glycoprotein Ibalpha and filamin-1 is essential for glycoprotein Ib/IX receptor anchorage at high shear. J Biol Chem 277: 2151–2159.

    CAS  Google Scholar 

  • Wong N, Chan A, Lee SW, Lam E, To KF, Lai PB et al. (2003). Positional mapping for amplified DNA sequences on 1q21–q22 in hepatocellular carcinoma indicates candidate genes over-expression. J Hepatol 38: 298–306.

    CAS  Google Scholar 

  • Woo MS, Ohta Y, Rabinovitz I, Stossel TP, Blenis J . (2004). Ribosomal S6 kinase (RSK) regulates phosphorylation of filamin A on an important regulatory site. Mol Cell Biol 24: 3025–3035.

    CAS  Google Scholar 

  • Wu G, Guo Z, Chatterjee A, Huang X, Rubin E, Wu F et al. (2006). Overexpression of glycosylphosphatidylinositol (GPI) transamidase subunits phosphatidylinositol glycan class T and/or GPI anchor attachment 1 induces tumorigenesis and contributes to invasion in human breast cancer. Cancer Res 66: 9829–9836.

    CAS  Google Scholar 

  • Yan H, Bigner DD, Velculescu V, Parsons DW . (2009). Mutant metabolic enzymes are at the origin of gliomas. Cancer Res 69: 9157–9159.

    CAS  Google Scholar 

  • Yin S, Fan X, Yu S, Li C, Sy MS . (2008). Binding of recombinant but not endogenous prion protein to DNA causes DNA internalization and expression in mammalian cells. J Biol Chem 283: 25446–25454.

    CAS  Google Scholar 

  • Yu J, Zhou H, Jin Y, Bai J, Yu Y, Geng J et al. (2008). Three distinct regions of allelic deletion on chromosome 17 involved in sporadic gastric cancer. Hepatogastroenterology 55: 1487–1491.

    CAS  Google Scholar 

  • Yue J, Wang Q, Lu H, Brenneman M, Fan F, Shen Z . (2009). The cytoskeleton protein filamin-A is required for an efficient recombinational DNA double strand break repair. Cancer Res 69: 7978–7985.

    CAS  Google Scholar 

  • Yusenko MV, Kuiper RP, Boethe T, Ljungberg B, van Kessel AG, Kovacs G . (2009). High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer 9: 152.

    Google Scholar 

  • Zanata SM, Lopes MH, Mercadante AF, Hajj GN, Chiarini LB, Nomizo R et al. (2002). Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J 21: 3307–3316.

    CAS  Google Scholar 

  • Zanusso G, Liu D, Ferrari S, Hegyi I, Yin X, Aguzzi A et al. (1998). Prion protein expression in different species: analysis with a panel of new mAbs. Proc Natl Acad Sci USA 95: 8812–8816.

    CAS  Google Scholar 

  • Zhu TN, He HJ, Kole S, D'Souza T, Agarwal R, Morin PJ et al. (2007). Filamin A-mediated down-regulation of the exchange factor Ras-GRF1 correlates with decreased matrix metalloproteinase-9 expression in human melanoma cells. J Biol Chem 282: 14816–14826.

    CAS  Google Scholar 

  • Zielinski B, Gratias S, Toedt G, Mendrzyk F, Stange DE, Radlwimmer B et al. (2005). Detection of chromosomal imbalances in retinoblastoma by matrix-based comparative genomic hybridization. Genes Chromosomes Cancer 43: 294–301.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank all the collaborators who have contributed to these studies, and Pearl Ling for careful reading of the paper, suggestion and editorial assistant. Start-up funds from the Department of Pathology to WX. Supported by R21-CA133559-01 from NIH and a pilot Grant from SDRC#5P30AR039750 from NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-S Sy.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Xin, W. & Sy, MS. Binding of pro-prion to filamin A: by design or an unfortunate blunder. Oncogene 29, 5329–5345 (2010). https://doi.org/10.1038/onc.2010.307

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.307

Keywords

This article is cited by

Search

Quick links