Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Extracellular adenosine triphosphate and adenosine in cancer

Abstract

Adenosine triphosphate (ATP) is actively released in the extracellular environment in response to tissue damage and cellular stress. Through the activation of P2X and P2Y receptors, extracellular ATP enhances tissue repair, promotes the recruitment of immune phagocytes and dendritic cells, and acts as a co-activator of NLR family, pyrin domain-containing 3 (NLRP3) inflammasomes. The conversion of extracellular ATP to adenosine, in contrast, essentially through the enzymatic activity of the ecto-nucleotidases CD39 and CD73, acts as a negative-feedback mechanism to prevent excessive immune responses. Here we review the effects of extracellular ATP and adenosine on tumorigenesis. First, we summarize the functions of extracellular ATP and adenosine in the context of tumor immunity. Second, we present an overview of the immunosuppressive and pro-angiogenic effects of extracellular adenosine. Third, we present experimental evidence that extracellular ATP and adenosine receptors are expressed by tumor cells and enhance tumor growth. Finally, we discuss recent studies, including our own work, which suggest that therapeutic approaches that promote ATP-mediated activation of inflammasomes, or inhibit the accumulation of tumor-derived extracellular adenosine, may constitute effective new means to induce anticancer activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H . (2009). Purinergic signalling in the nervous system: an overview. Trends Neurosci 32: 19–29.

    CAS  Google Scholar 

  • Adinolfi E, Melchiorri L, Falzoni S, Chiozzi P, Morelli A, Tieghi A et al. (2002). P2X7 receptor expression in evolutive and indolent forms of chronic B lymphocytic leukemia. Blood 99: 706–708.

    CAS  Google Scholar 

  • Ahmad A, Ahmad S, Glover L, Miller SM, Shannon JM, Guo X et al. (2009). Adenosine A2A receptor is a unique angiogenic target of HIF-2alpha in pulmonary endothelial cells. Proc Natl Acad Sci USA 106: 10684–10689.

    CAS  Google Scholar 

  • Airas L, Niemela J, Jalkanen S . (2000). CD73 engagement promotes lymphocyte binding to endothelial cells via a lymphocyte function-associated antigen-1-dependent mechanism. J Immunol 165: 5411–5417.

    CAS  Google Scholar 

  • Airas L, Niemela J, Salmi M, Puurunen T, Smith DJ, Jalkanen S . (1997). Differential regulation and function of CD73, a glycosyl-phosphatidylinositol-linked 70-kD adhesion molecule, on lymphocytes and endothelial cells. J Cell Biol 136: 421–431.

    CAS  PubMed Central  Google Scholar 

  • Anderson SM, Tomayko MM, Ahuja A, Haberman AM, Shlomchik MJ . (2007). New markers for murine memory B cells that define mutated and unmutated subsets. J Exp Med 204: 2103–2114.

    CAS  PubMed Central  Google Scholar 

  • Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A et al. (2007). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13: 1050–1059.

    CAS  PubMed Central  Google Scholar 

  • Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M et al. (2008). ATP drives lamina propria T(H)17 cell differentiation. Nature 455: 808–812.

    CAS  PubMed Central  Google Scholar 

  • Axtell RC, de Jong BA, Boniface K, van der Voort LF, Bhat R, De Sarno P et al. (2010). T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med 16: 406–412.

    CAS  PubMed Central  Google Scholar 

  • Bavaresco L, Bernardi A, Braganhol E, Cappellari AR, Rockenbach L, Farias PF et al. (2008). The role of ecto-5′-nucleotidase/CD73 in glioma cell line proliferation. Mol Cell Biochem 319: 61–68.

    CAS  Google Scholar 

  • Beldi G, Wu Y, Banz Y, Nowak M, Miller L, Enjyoji K et al. (2008). Natural killer T cell dysfunction in CD39-null mice protects against concanavalin A-induced hepatitis. Hepatology 48: 841–852.

    CAS  PubMed Central  Google Scholar 

  • Bettelli E, Oukka M, Kuchroo VK . (2007). T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 8: 345–350.

    CAS  Google Scholar 

  • Boucher I, Yang L, Mayo C, Klepeis V, Trinkaus-Randall V . (2007). Injury and nucleotides induce phosphorylation of epidermal growth factor receptor: MMP and HB-EGF dependent pathway. Exp Eye Res 85: 130–141.

    CAS  PubMed Central  Google Scholar 

  • Bouma MG, Jeunhomme TM, Boyle DL, Dentener MA, Voitenok NN, van den Wildenberg FA et al. (1997). Adenosine inhibits neutrophil degranulation in activated human whole blood: involvement of adenosine A2 and A3 receptors. J Immunol 158: 5400–5408.

    CAS  Google Scholar 

  • Bournazou I, Pound JD, Duffin R, Bournazos S, Melville LA, Brown SB et al. (2009). Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. J Clin Invest 119: 20–32.

    CAS  Google Scholar 

  • Burnstock G . (1972). Purinergic nerves. Pharmacol Rev 24: 509–581.

    CAS  Google Scholar 

  • Burnstock G . (2006). Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci 27: 166–176.

    CAS  Google Scholar 

  • Burnstock G . (2007). Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87: 659–797.

    CAS  Google Scholar 

  • Burnstock G, Campbell G, Satchell D, Smythe A . (1970). Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol 40: 668–688.

    CAS  PubMed Central  Google Scholar 

  • Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A et al. (2006). ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314: 1792–1795.

    CAS  PubMed Central  Google Scholar 

  • Cho JH, Weaver CT . (2007). The genetics of inflammatory bowel disease. Gastroenterology 133: 1327–1339.

    CAS  Google Scholar 

  • Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR et al. (2010). IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest 120: 1762–1773.

    PubMed Central  Google Scholar 

  • Christensen LD, Andersen V, Nygaard P, Bendtzen K . (1992). Effects of immunomodulators on ecto-5′-nucleotidase activity on blood mononuclear cells in vitro. Scand J Immunol 35: 407–413.

    CAS  Google Scholar 

  • Clark AN, Youkey R, Liu X, Jia L, Blatt R, Day YJ et al. (2007). A1 adenosine receptor activation promotes angiogenesis and release of VEGF from monocytes. Circ Res 101: 1130–1138.

    CAS  Google Scholar 

  • Colgan SP, Eltzschig HK, Eckle T, Thompson LF . (2006). Physiological roles for ecto-5′-nucleotidase (CD73). Purinergic Signal 2: 351–360.

    CAS  PubMed Central  Google Scholar 

  • Cronstein BN, Daguma L, Nichols D, Hutchison AJ, Williams M . (1990). The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively. J Clin Invest 85: 1150–1157.

    CAS  PubMed Central  Google Scholar 

  • Csoka B, Himer L, Selmeczy Z, Vizi ES, Pacher P, Ledent C et al. (2008). Adenosine A2A receptor activation inhibits T helper 1 and T helper 2 cell development and effector function. FASEB J 22: 3491–3499.

    CAS  PubMed Central  Google Scholar 

  • Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A et al. (2007). Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204: 1257–1265.

    CAS  PubMed Central  Google Scholar 

  • Di Virgilio F, Ferrari D, Adinolfi E . (2009). P2X(7): a growth-promoting receptor—implications for cancer. Purinergic Signal 5: 251–256.

    CAS  PubMed Central  Google Scholar 

  • Dieckhoff J, Mollenhauer J, Kuhl U, Niggemeyer B, von der Mark K, Mannherz HG . (1986). The extracellular matrix proteins laminin and fibronectin modify the AMPase activity of 5′-nucleotidase from chicken gizzard smooth muscle. FEBS Lett 195: 82–86.

    CAS  Google Scholar 

  • Durak I, Cetin R, Canbolat O, Cetin D, Yurtarslani Z, Unal A . (1994). Adenosine deaminase, 5′-nucleotidase, guanase and cytidine deaminase activities in gastric tissues from patients with gastric cancer. Cancer Lett 84: 199–202.

    CAS  Google Scholar 

  • Dwyer KM, Deaglio S, Gao W, Friedman D, Strom TB, Robson SC . (2007). CD39 and control of cellular immune responses. Purinergic Signal 3: 171–180.

    CAS  PubMed Central  Google Scholar 

  • Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF et al. (2009). Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461: 282–286.

    Article  CAS  Google Scholar 

  • Eltzschig HK, Ibla JC, Furuta GT, Leonard MO, Jacobson KA, Enjyoji K et al. (2003). Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J Exp Med 198: 783–796.

    CAS  PubMed Central  Google Scholar 

  • Eppell BA, Newell AM, Brown EJ . (1989). Adenosine receptors are expressed during differentiation of monocytes to macrophages in vitro. Implications for regulation of phagocytosis. J Immunol 143: 4141–4145.

    CAS  Google Scholar 

  • Eroglu A, Canbolat O, Demirci S, Kocaoglu H, Eryavuz Y, Akgul H . (2000). Activities of adenosine deaminase and 5′-nucleotidase in cancerous and noncancerous human colorectal tissues. Med Oncol 17: 319–324.

    CAS  Google Scholar 

  • Etique N, Grillier-Vuissoz I, Lecomte J, Flament S . (2009). Crosstalk between adenosine receptor (A2A isoform) and ERalpha mediates ethanol action in MCF-7 breast cancer cells. Oncol Rep 21: 977–981.

    CAS  Google Scholar 

  • Feng YH, Li X, Wang L, Zhou L, Gorodeski GI . (2006). A truncated P2X7 receptor variant (P2X7-j) endogenously expressed in cervical cancer cells antagonizes the full-length P2X7 receptor through hetero-oligomerization. J Biol Chem 281: 17228–17237.

    CAS  PubMed Central  Google Scholar 

  • Feng YH, Wang L, Wang Q, Li X, Zeng R, Gorodeski GI . (2005). ATP stimulates GRK-3 phosphorylation and beta-arrestin-2-dependent internalization of P2X7 receptor. Am J Physiol Cell Physiol 288: C1342–C1356.

    CAS  PubMed Central  Google Scholar 

  • Feoktistov I, Biaggioni I . (1997). Adenosine A2B receptors. Pharmacol Rev 49: 381–402.

    CAS  Google Scholar 

  • Feoktistov I, Goldstein AE, Ryzhov S, Zeng D, Belardinelli L, Voyno-Yasenetskaya T et al. (2002). Differential expression of adenosine receptors in human endothelial cells: role of A2B receptors in angiogenic factor regulation. Circ Res 90: 531–538.

    CAS  Google Scholar 

  • Feoktistov I, Ryzhov S, Zhong H, Goldstein AE, Matafonov A, Zeng D et al. (2004). Hypoxia modulates adenosine receptors in human endothelial and smooth muscle cells toward an A2B angiogenic phenotype. Hypertension 44: 649–654.

    CAS  Google Scholar 

  • Firestein GS, Bullough DA, Erion MD, Jimenez R, Ramirez-Weinhouse M, Barankiewicz J et al. (1995). Inhibition of neutrophil adhesion by adenosine and an adenosine kinase inhibitor. The role of selectins. J Immunol 154: 326–334.

    CAS  Google Scholar 

  • Fishman P, Bar-Yehuda S, Ohana G, Barer F, Ochaion A, Erlanger A et al. (2004). An agonist to the A3 adenosine receptor inhibits colon carcinoma growth in mice via modulation of GSK-3 beta and NF-kappa B. Oncogene 23: 2465–2471.

    CAS  Google Scholar 

  • Fountain SJ, Parkinson K, Young MT, Cao L, Thompson CR, North RA . (2007). An intracellular P2X receptor required for osmoregulation in Dictyostelium discoideum. Nature 448: 200–203.

    CAS  PubMed Central  Google Scholar 

  • Fredholm BB, AP IJ, Jacobson KA, Klotz KN, Linden J . (2001). International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53: 527–552.

    CAS  Google Scholar 

  • Fredholm BB, Chern Y, Franco R, Sitkovsky M . (2007). Aspects of the general biology of adenosine A2A signaling. Prog Neurobiol 83: 263–276.

    CAS  Google Scholar 

  • Friedman DJ, Kunzli BM, YI AR, Sevigny J, Berberat PO, Enjyoji K et al. (2009). From the Cover: CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease. Proc Natl Acad Sci USA 106: 16788–16793.

    CAS  Google Scholar 

  • Fukuda K, Sakakura C, Miyagawa K, Kuriu Y, Kin S, Nakase Y et al. (2004). Differential gene expression profiles of radioresistant oesophageal cancer cell lines established by continuous fractionated irradiation. Br J Cancer 91: 1543–1550.

    CAS  PubMed Central  Google Scholar 

  • Gallos G, Ruyle TD, Emala CW, Lee HT . (2005). A1 adenosine receptor knockout mice exhibit increased mortality, renal dysfunction, and hepatic injury in murine septic peritonitis. Am J Physiol Renal Physiol 289: F369–F376.

    CAS  Google Scholar 

  • Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA . (2008). The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117: 123–140.

    CAS  Google Scholar 

  • Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C et al. (2009). Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15: 1170–1178.

    CAS  Google Scholar 

  • Godfrey DI, Kronenberg M . (2004). Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114: 1379–1388.

    CAS  PubMed Central  Google Scholar 

  • Gonzales E, Julien B, Serriere-Lanneau V, Nicou A, Doignon I, Lagoudakis L et al. (2010). ATP release after partial hepatectomy regulates liver regeneration in the rat. J Hepatol 52: 54–62.

    CAS  Google Scholar 

  • Goto T, Herberman RB, Maluish A, Strong DM . (1983). Cyclic AMP as a mediator of prostaglandin E-induced suppression of human natural killer cell activity. J Immunol 130: 1350–1355.

    CAS  Google Scholar 

  • Greig AV, Linge C, Cambrey A, Burnstock G . (2003). Purinergic receptors are part of a signaling system for keratinocyte proliferation, differentiation, and apoptosis in human fetal epidermis. J Invest Dermatol 121: 1145–1149.

    CAS  Google Scholar 

  • Guerra AN, Fisette PL, Pfeiffer ZA, Quinchia-Rios BH, Prabhu U, Aga M et al. (2003). Purinergic receptor regulation of LPS-induced signaling and pathophysiology. J Endotoxin Res 9: 256–263.

    CAS  Google Scholar 

  • Gunosewoyo H, Coster MJ, Kassiou M . (2007). Molecular probes for P2X7 receptor studies. Curr Med Chem 14: 1505–1523.

    CAS  Google Scholar 

  • Harish A, Hohana G, Fishman P, Arnon O, Bar-Yehuda S . (2003). A3 adenosine receptor agonist potentiates natural killer cell activity. Int J Oncol 23: 1245–1249.

    CAS  Google Scholar 

  • Hasko G, Cronstein BN . (2004). Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25: 33–39.

    CAS  Google Scholar 

  • Hasko G, Kuhel DG, Salzman AL, Szabo C . (2000). ATP suppression of interleukin-12 and tumour necrosis factor-alpha release from macrophages. Br J Pharmacol 129: 909–914.

    CAS  PubMed Central  Google Scholar 

  • Hasko G, Szabo C, Nemeth ZH, Kvetan V, Pastores SM, Vizi ES . (1996). Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J Immunol 157: 4634–4640.

    CAS  Google Scholar 

  • Hochhauser E, Leshem D, Kaminski O, Cheporko Y, Vidne BA, Shainberg A . (2007). The protective effect of prior ischemia reperfusion adenosine A1 or A3 receptor activation in the normal and hypertrophied heart. Interact Cardiovasc Thorac Surg 6: 363–368.

    Google Scholar 

  • Hyman MC, Petrovic-Djergovic D, Visovatti SH, Liao H, Yanamadala S, Bouis D et al. (2009). Self-regulation of inflammatory cell trafficking in mice by the leukocyte surface apyrase CD39. J Clin Invest 119: 1136–1149.

    CAS  PubMed Central  Google Scholar 

  • Idzko M, Dichmann S, Ferrari D, Di Virgilio F, la Sala A, Girolomoni G et al. (2002). Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin-sensitive P2y receptors. Blood 100: 925–932.

    CAS  Google Scholar 

  • Jantaratnotai N, Choi HB, McLarnon JG . (2009). ATP stimulates chemokine production via a store-operated calcium entry pathway in C6 glioma cells. BMC Cancer 9: 442.

    PubMed Central  Google Scholar 

  • Jin D, Fan J, Wang L, Thompson LF, Liu A, Daniel BJ et al. (2010). CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res 70: 2245–2255.

    CAS  PubMed Central  Google Scholar 

  • Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L et al. (2007). Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26: 433–443.

    CAS  Google Scholar 

  • Khakh BS, North RA . (2006). P2X receptors as cell-surface ATP sensors in health and disease. Nature 442: 527–532.

    CAS  Google Scholar 

  • Khoa ND, Montesinos MC, Reiss AB, Delano D, Awadallah N, Cronstein BN . (2001). Inflammatory cytokines regulate function and expression of adenosine A(2A) receptors in human monocytic THP-1 cells. J Immunol 167: 4026–4032.

    CAS  Google Scholar 

  • Kim SY, Sivaguru M, Stacey G . (2006). Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signaling. Plant Physiol 142: 984–992.

    CAS  PubMed Central  Google Scholar 

  • Kitakaze M, Node K, Minamino T, Komamura K, Funaya H, Shinozaki Y et al. (1996). Role of activation of protein kinase C in the infarct size-limiting effect of ischemic preconditioning through activation of ecto-5′-nucleotidase. Circulation 93: 781–791.

    CAS  Google Scholar 

  • Kolachala V, Asamoah V, Wang L, Obertone TS, Ziegler TR, Merlin D et al. (2005). TNF-alpha upregulates adenosine 2b (A2b) receptor expression and signaling in intestinal epithelial cells: a basis for A2bR overexpression in colitis. Cell Mol Life Sci 62: 2647–2657.

    CAS  Google Scholar 

  • Kondo T, Nakazawa T, Murata SI, Katoh R . (2006). Expression of CD73 and its ecto-5′-nucleotidase activity are elevated in papillary thyroid carcinomas. Histopathology 48: 612–614.

    CAS  Google Scholar 

  • Lane HA, Motoyama AB, Beuvink I, Hynes NE . (2001). Modulation of p27/Cdk2 complex formation through 4D5-mediated inhibition of HER2 receptor signaling. Ann Oncol 12 (Suppl 1): S21–S22.

    Google Scholar 

  • Lappas CM, Rieger JM, Linden J . (2005). A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. J Immunol 174: 1073–1080.

    CAS  Google Scholar 

  • Lee H, Lin EC, Liu L, Smith JW . (2003). Gene expression profiling of tumor xenografts: in vivo analysis of organ-specific metastasis. Int J Cancer 107: 528–534.

    CAS  Google Scholar 

  • Leth-Larsen R, Lund R, Hansen HV, Laenkholm AV, Tarin D, Jensen ON et al. (2009). Metastasis-related plasma membrane proteins of human breast cancer cells identified by comparative quantitative mass spectrometry. Mol Cell Proteomics 8: 1436–1449.

    CAS  PubMed Central  Google Scholar 

  • LeWitt PA, Guttman M, Tetrud JW, Tuite PJ, Mori A, Chaikin P et al. (2008). Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces ‘off’ time in Parkinson's disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol 63: 295–302.

    CAS  Google Scholar 

  • Li X, Zhou L, Feng YH, Abdul-Karim FW, Gorodeski GI . (2006). The P2X7 receptor: a novel biomarker of uterine epithelial cancers. Cancer Epidemiol Biomarkers Prev 15: 1906–1913.

    CAS  PubMed Central  Google Scholar 

  • Liang BT, Jacobson KA . (1998). A physiological role of the adenosine A3 receptor: sustained cardioprotection. Proc Natl Acad Sci USA 95: 6995–6999.

    CAS  Google Scholar 

  • Lin Z, Yin P, Reierstad S, O'Halloran M, Coon VJ, Pearson EK et al. (2010). Adenosine A1 receptor, a target and regulator of estrogen receptoralpha action, mediates the proliferative effects of estradiol in breast cancer. Oncogene 29: 1114–1122.

    CAS  Google Scholar 

  • Ludwig HC, Rausch S, Schallock K, Markakis E . (1999). Expression of CD 73 (ecto-5′-nucleotidase) in 165 glioblastomas by immunohistochemistry and electronmicroscopic histochemistry. Anticancer Res 19: 1747–1752.

    CAS  Google Scholar 

  • Madi L, Ochaion A, Rath-Wolfson L, Bar-Yehuda S, Erlanger A, Ohana G et al. (2004). The A3 adenosine receptor is highly expressed in tumor versus normal cells: potential target for tumor growth inhibition. Clin Cancer Res 10: 4472–4479.

    CAS  Google Scholar 

  • Majumdar S, Aggarwal BB . (2003). Adenosine suppresses activation of nuclear factor-kappaB selectively induced by tumor necrosis factor in different cell types. Oncogene 22: 1206–1218.

    CAS  Google Scholar 

  • Mandapathil M, Hilldorfer B, Szczepanski MJ, Czystowska M, Szajnik M, Ren J et al. (2010). Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells. J Biol Chem 285: 7176–7186.

    CAS  Google Scholar 

  • Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M et al. (2006). Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440: 228–232.

    CAS  Google Scholar 

  • Marteau F, Gonzalez NS, Communi D, Goldman M, Boeynaems JM . (2005). Thrombospondin-1 and indoleamine 2, 3-dioxygenase are major targets of extracellular ATP in human dendritic cells. Blood 106: 3860–3866.

    CAS  Google Scholar 

  • Martins I, Tesniere A, Kepp O, Michaud M, Schlemmer F, Senovilla L et al. (2009). Chemotherapy induces ATP release from tumor cells. Cell Cycle 8: 3723–3728.

    CAS  Google Scholar 

  • Massaia M, Perrin L, Bianchi A, Ruedi J, Attisano C, Altieri D et al. (1990). Human T cell activation. Synergy between CD73 (ecto-5′-nucleotidase) and signals delivered through CD3 and CD2 molecules. J Immunol 145: 1664–1674.

    CAS  Google Scholar 

  • Mikhailov A, Sokolovskaya A, Yegutkin GG, Amdahl H, West A, Yagita H et al. (2008). CD73 participates in cellular multiresistance program and protects against TRAIL-induced apoptosis. J Immunol 181: 464–475.

    CAS  PubMed Central  Google Scholar 

  • Mills JH, Thompson LF, Mueller C, Waickman AT, Jalkanen S, Niemela J et al. (2008). CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 105: 9325–9330.

    CAS  Google Scholar 

  • Minguet S, Huber M, Rosenkranz L, Schamel WW, Reth M, Brummer T . (2005). Adenosine and cAMP are potent inhibitors of the NF-kappa B pathway downstream of immunoreceptors. Eur J Immunol 35: 31–41.

    CAS  Google Scholar 

  • Mirza A, Basso A, Black S, Malkowski M, Kwee L, Pachter JA et al. (2005). RNA interference targeting of A1 receptor-overexpressing breast carcinoma cells leads to diminished rates of cell proliferation and induction of apoptosis. Cancer Biol Ther 4: 1355–1360.

    CAS  Google Scholar 

  • Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A et al. (2009). Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30: 899–911.

    CAS  PubMed Central  Google Scholar 

  • Morello S, Petrella A, Festa M, Popolo A, Monaco M, Vuttariello E et al. (2008). Cl-IB-MECA inhibits human thyroid cancer cell proliferation independently of A3 adenosine receptor activation. Cancer Biol Ther 7: 278–284.

    CAS  Google Scholar 

  • Myers TJ, Brennaman LH, Stevenson M, Higashiyama S, Russell WE, Lee DC et al. (2009). Mitochondrial reactive oxygen species mediate GPCR-induced TACE/ADAM17-dependent transforming growth factor-alpha shedding. Mol Biol Cell 20: 5236–5249.

    CAS  PubMed Central  Google Scholar 

  • Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B, van der Meer JH et al. (2009). Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 113: 2324–2335.

    CAS  PubMed Central  Google Scholar 

  • Niemela J, Henttinen T, Yegutkin GG, Airas L, Kujari AM, Rajala P et al. (2004). IFN-alpha induced adenosine production on the endothelium: a mechanism mediated by CD73 (ecto-5′-nucleotidase) up-regulation. J Immunol 172: 1646–1653.

    Google Scholar 

  • Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY et al. (2008). Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 112: 1822–1831.

    CAS  PubMed Central  Google Scholar 

  • Nowak M, Lynch L, Yue S, Ohta A, Sitkovsky M, Balk SP et al. (2010). The A2aR adenosine receptor controls cytokine production in iNKT cells. Eur J Immunol 40: 682–687.

    CAS  PubMed Central  Google Scholar 

  • Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL et al. (2007). Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13: 54–61.

    CAS  PubMed Central  Google Scholar 

  • Odashima M, Bamias G, Rivera-Nieves J, Linden J, Nast CC, Moskaluk CA et al. (2005). Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology 129: 26–33.

    CAS  PubMed Central  Google Scholar 

  • Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK et al. (2006). A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci USA 103: 13132–13137.

    CAS  Google Scholar 

  • Ohta A, Madasu M, Kini R, Subramanian M, Goel N, Sitkovsky M . (2009). A2A adenosine receptor may allow expansion of T cells lacking effector functions in extracellular adenosine-rich microenvironments. J Immunol 183: 5487–5493.

    CAS  Google Scholar 

  • Ohta A, Sitkovsky M . (2001). Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414: 916–920.

    CAS  Google Scholar 

  • Palmer TM, Stiles GL . (2000). Identification of threonine residues controlling the agonist-dependent phosphorylation and desensitization of the rat A(3) adenosine receptor. Mol Pharmacol 57: 539–545.

    CAS  Google Scholar 

  • Panther E, Corinti S, Idzko M, Herouy Y, Napp M, la Sala A et al. (2003). Adenosine affects expression of membrane molecules, cytokine and chemokine release, and the T-cell stimulatory capacity of human dendritic cells. Blood 101: 3985–3990.

    CAS  Google Scholar 

  • Panther E, Idzko M, Herouy Y, Rheinen H, Gebicke-Haerter PJ, Mrowietz U et al. (2001). Expression and function of adenosine receptors in human dendritic cells. FASEB J 15: 1963–1970.

    CAS  Google Scholar 

  • Piccini A, Carta S, Tassi S, Lasiglie D, Fossati G, Rubartelli A . (2008). ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proc Natl Acad Sci USA 105: 8067–8072.

    CAS  Google Scholar 

  • Priebe T, Ruiz L, Nelson JA . (1990). Role of natural killer cells in the modulation of primary antibody production by purine nucleosides and their analogs. Cell Immunol 130: 513–519.

    CAS  Google Scholar 

  • Raffaghello L, Chiozzi P, Falzoni S, Di Virgilio F, Pistoia V . (2006). The P2X7 receptor sustains the growth of human neuroblastoma cells through a substance P-dependent mechanism. Cancer Res 66: 907–914.

    CAS  Google Scholar 

  • Reichelt ME, Willems L, Molina JG, Sun CX, Noble JC, Ashton KJ et al. (2005). Genetic deletion of the A1 adenosine receptor limits myocardial ischemic tolerance. Circ Res 96: 363–367.

    CAS  Google Scholar 

  • Resta R, Yamashita Y, Thompson LF . (1998). Ecto-enzyme and signaling functions of lymphocyte CD73. Immunol Rev 161: 95–109.

    CAS  Google Scholar 

  • Richard CL, Tan EY, Blay J . (2006). Adenosine upregulates CXCR4 and enhances the proliferative and migratory responses of human carcinoma cells to CXCL12/SDF-1alpha. Int J Cancer 119: 2044–2053.

    CAS  Google Scholar 

  • Ring S, Enk AH, Mahnke K . (2010). ATP activates regulatory T Cells in vivo during contact hypersensitivity reactions. J Immunol 184: 3408–3416.

    CAS  Google Scholar 

  • Robson SC, Sevigny J, Zimmermann H . (2006). The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal 2: 409–430.

    CAS  PubMed Central  Google Scholar 

  • Rodrigues S, De Wever O, Bruyneel E, Rooney RJ, Gespach C . (2007). Opposing roles of netrin-1 and the dependence receptor DCC in cancer cell invasion, tumor growth and metastasis. Oncogene 26: 5615–5625.

    CAS  Google Scholar 

  • Ryzhov S, Goldstein AE, Matafonov A, Zeng D, Biaggioni I, Feoktistov I . (2004). Adenosine-activated mast cells induce IgE synthesis by B lymphocytes: an A2B-mediated process involving Th2 cytokines IL-4 and IL-13 with implications for asthma. J Immunol 172: 7726–7733.

    CAS  Google Scholar 

  • Ryzhov S, Novitskiy SV, Zaynagetdinov R, Goldstein AE, Carbone DP, Biaggioni I et al. (2008). Host A(2B) adenosine receptors promote carcinoma growth. Neoplasia 10: 987–995.

    CAS  PubMed Central  Google Scholar 

  • Sadej R, Spychala J, Skladanowski AC . (2006). Expression of ecto-5′-nucleotidase (eN, CD73) in cell lines from various stages of human melanoma. Melanoma Res 16: 213–222.

    CAS  Google Scholar 

  • Sauer H, Klimm B, Hescheler J, Wartenberg M . (2001). Activation of p90RSK and growth stimulation of multicellular tumor spheroids are dependent on reactive oxygen species generated after purinergic receptor stimulation by ATP. FASEB J 15: 2539–2541.

    CAS  Google Scholar 

  • Savic V, Stefanovic V, Ardaillou N, Ardaillou R . (1990). Induction of ecto-5′-nucleotidase of rat cultured mesangial cells by interleukin-1 beta and tumour necrosis factor-alpha. Immunology 70: 321–326.

    CAS  PubMed Central  Google Scholar 

  • Schnurr M, Toy T, Shin A, Hartmann G, Rothenfusser S, Soellner J et al. (2004). Role of adenosine receptors in regulating chemotaxis and cytokine production of plasmacytoid dendritic cells. Blood 103: 1391–1397.

    CAS  Google Scholar 

  • Schnurr M, Toy T, Shin A, Wagner M, Cebon J, Maraskovsky E . (2005). Extracellular nucleotide signaling by P2 receptors inhibits IL-12 and enhances IL-23 expression in human dendritic cells: a novel role for the cAMP pathway. Blood 105: 1582–1589.

    CAS  PubMed Central  Google Scholar 

  • Schnurr M, Toy T, Stoitzner P, Cameron P, Shin A, Beecroft T et al. (2003). ATP gradients inhibit the migratory capacity of specific human dendritic cell types: implications for P2Y11 receptor signaling. Blood 102: 613–620.

    CAS  PubMed Central  Google Scholar 

  • Schroder K, Tschopp J . (2010). The inflammasomes. Cell 140: 821–832.

    CAS  Google Scholar 

  • Schulte G, Fredholm BB . (2003). Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15: 813–827.

    CAS  Google Scholar 

  • Slater M, Danieletto S, Gidley-Baird A, Teh LC, Barden JA . (2004). Early prostate cancer detected using expression of non-functional cytolytic P2X7 receptors. Histopathology 44: 206–215.

    CAS  Google Scholar 

  • Solini A, Cuccato S, Ferrari D, Santini E, Gulinelli S, Callegari MG et al. (2008). Increased P2X7 receptor expression and function in thyroid papillary cancer: a new potential marker of the disease? Endocrinology 149: 389–396.

    CAS  Google Scholar 

  • Spychala J, Kitajewski J . (2004). Wnt and beta-catenin signaling target the expression of ecto-5′-nucleotidase and increase extracellular adenosine generation. Exp Cell Res 296: 99–108.

    CAS  Google Scholar 

  • Spychala J, Lazarowski E, Ostapkowicz A, Ayscue LH, Jin A, Mitchell BS . (2004). Role of estrogen receptor in the regulation of ecto-5′-nucleotidase and adenosine in breast cancer. Clin Cancer Res 10: 708–717.

    CAS  Google Scholar 

  • St Hilaire C, Koupenova M, Carroll SH, Smith BD, Ravid K . (2008). TNF-alpha upregulates the A2B adenosine receptor gene: the role of NAD(P)H oxidase 4. Biochem Biophys Res Commun 375: 292–296.

    CAS  Google Scholar 

  • Stagg J, Divisekera U, McLaughlin N, Sharkey J, Pommey S, Denoyer D et al. (2010). Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci USA 107: 1547–1552.

    CAS  Google Scholar 

  • Stella J, Bavaresco L, Braganhol E, Rockenbach L, Farias PF, Wink MR et al. (2010). Differential ectonucleotidase expression in human bladder cancer cell lines. Urol Oncol 28: 260–267.

    CAS  Google Scholar 

  • Strater N . (2006). Ecto-5′-nucleotidase: structure function relationships. Purinergic Signal 2: 343–350.

    PubMed Central  Google Scholar 

  • Su C, Bevan JA, Burnstock G . (1971). [3H]adenosine triphosphate: release during stimulation of enteric nerves. Science 173: 336–338.

    CAS  Google Scholar 

  • Swann JB, Uldrich AP, van Dommelen S, Sharkey J, Murray WK, Godfrey DI et al. (2009). Type I natural killer T cells suppress tumors caused by p53 loss in mice. Blood 113: 6382–6385.

    CAS  PubMed Central  Google Scholar 

  • Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J, Eltzschig HK et al. (2002). Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 110: 993–1002.

    CAS  PubMed Central  Google Scholar 

  • Takedachi M, Qu D, Ebisuno Y, Oohara H, Joachims ML, McGee ST et al. (2008). CD73-generated adenosine restricts lymphocyte migration into draining lymph nodes. J Immunol 180: 6288–6296.

    CAS  PubMed Central  Google Scholar 

  • Thompson LF, Eltzschig HK, Ibla JC, Van De Wiele CJ, Resta R, Morote-Garcia JC et al. (2004). Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J Exp Med 200: 1395–1405.

    CAS  PubMed Central  Google Scholar 

  • Tomayko MM, Anderson SM, Brayton CE, Sadanand S, Steinel NC, Behrens TW et al. (2008). Systematic comparison of gene expression between murine memory and naive B cells demonstrates that memory B cells have unique signaling capabilities. J Immunol 181: 27–38.

    CAS  PubMed Central  Google Scholar 

  • Ujhazy P, Berleth ES, Pietkiewicz JM, Kitano H, Skaar JR, Ehrke MJ et al. (1996). Evidence for the involvement of ecto-5′-nucleotidase (CD73) in drug resistance. Int J Cancer 68: 493–500.

    CAS  Google Scholar 

  • Wei W, Ryu JK, Choi HB, McLarnon JG . (2008). Expression and function of the P2X(7) receptor in rat C6 glioma cells. Cancer Lett 260: 79–87.

    CAS  Google Scholar 

  • Weihua Z, Tsan R, Huang WC, Wu Q, Chiu CH, Fidler IJ et al. (2008). Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell 13: 385–393.

    PubMed Central  Google Scholar 

  • Wilden PA, Agazie YM, Kaufman R, Halenda SP . (1998). ATP-stimulated smooth muscle cell proliferation requires independent ERK and PI3 K signaling pathways. Am J Physiol 275: H1209–H1215.

    CAS  Google Scholar 

  • Wu PY, Lin YC, Chang CL, Lu HT, Chin CH, Hsu TT et al. (2009). Functional decreases in P2X7 receptors are associated with retinoic acid-induced neuronal differentiation of Neuro-2a neuroblastoma cells. Cell Signal 21: 881–891.

    CAS  Google Scholar 

  • Xaus J, Mirabet M, Lloberas J, Soler C, Lluis C, Franco R et al. (1999). IFN-gamma up-regulates the A2B adenosine receptor expression in macrophages: a mechanism of macrophage deactivation. J Immunol 162: 3607–3614.

    CAS  Google Scholar 

  • Yu L, Frith MC, Suzuki Y, Peterfreund RA, Gearan T, Sugano S et al. (2004). Characterization of genomic organization of the adenosine A2A receptor gene by molecular and bioinformatics analyses. Brain Res 1000: 156–173.

    CAS  Google Scholar 

  • Zarek PE, Huang CT, Lutz ER, Kowalski J, Horton MR, Linden J et al. (2008). A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood 111: 251–259.

    CAS  PubMed Central  Google Scholar 

  • Zhang H, Conrad DM, Butler JJ, Zhao C, Blay J, Hoskin DW . (2004). Adenosine acts through A2 receptors to inhibit IL-2-induced tyrosine phosphorylation of STAT5 in T lymphocytes: role of cyclic adenosine 3′, 5′-monophosphate and phosphatases. J Immunol 173: 932–944.

    CAS  Google Scholar 

  • Zhi X, Chen S, Zhou P, Shao Z, Wang L, Ou Z et al. (2007). RNA interference of ecto-5′-nucleotidase (CD73) inhibits human breast cancer cell growth and invasion. Clin Exp Metast 24: 439–448.

    CAS  Google Scholar 

  • Zhou L, Qi X, Potashkin JA, Abdul-Karim FW, Gorodeski GI . (2008). MicroRNAs miR-186 and miR-150 down-regulate expression of the pro-apoptotic purinergic P2X7 receptor by activation of instability sites at the 3′-untranslated region of the gene that decrease steady-state levels of the transcript. J Biol Chem 283: 28274–28286.

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

JS is supported by a Canadian Institutes of Health Research (CIHR) Fellowship. MJS is supported by the Susan G Komen Breast Cancer Foundation, the Victorian Breast Cancer Research Consortium, the Victorian Cancer Agency, and by a National Health and Medical Research Council of Australia (NH&MRC) Australia Fellowship and Program Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Stagg or M J Smyth.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stagg, J., Smyth, M. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29, 5346–5358 (2010). https://doi.org/10.1038/onc.2010.292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.292

Keywords

This article is cited by

Search

Quick links