Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Peptide mimotopes recognized by antibodies cetuximab and matuzumab induce a functionally equivalent anti-EGFR immune response

Abstract

Aberrant activation of the epidermal growth factor receptor (EGFR) has been found in human cancers of various origins, and has been implicated in cancer pathogenesis. The therapeutic anti-EGFR antibodies cetuximab and matuzumab inhibit both ligand-induced receptor activation and growth of EGFR-expressing tumor cells. The efficacy of such EGFR-targeted therapies may be further enhanced by induction of functionally equivalent endogenous antibody responses. Here we describe novel peptide sequences selected from random peptide libraries for binding to single-chain antibody fragments of cetuximab or matuzumab. Two of these peptides characterized by KTL and YPLG motifs are recognized equally well by cetuximab and matuzumab, although nonoverlapping epitopes were previously reported for these antibodies. Immunization of experimental animals with synthetic KTL- and YPLG-containing peptides led to induction of antibodies that cross-react with human EGFR, and prevent binding of natural EGFR ligands, ligand-induced receptor activation and tumor cell growth in a manner similar to cetuximab and matuzumab. Our findings show that these peptide mimotopes can induce anti-EGFR antibodies with antitumoral activity, which may have implications for EGFR-specific cancer immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Azemar M, Schmidt M, Arlt F, Kennel P, Brandt B, Papadimitriou A et al. (2000). Recombinant antibody toxins specific for ErbB2 and EGF receptor inhibit the in vitro growth of human head and neck cancer cells and cause rapid tumor regression in vivo. Int J Cancer 86: 269–275.

    Article  CAS  Google Scholar 

  • Baselga J, Trigo JM, Bourhis J, Tortochaux J, Cortes-Funes H, Hitt R et al. (2005). Phase II multicenter study of the antiepidermal growth factor receptor monoclonal antibody cetuximab in combination with platinum-based chemotherapy in patients with platinum-refractory metastatic and/or recurrent squamous cell carcinoma of the head and neck. J Clin Oncol 23: 5568–5577.

    Article  CAS  Google Scholar 

  • Benhar I, Azriel R, Nahary L, Shaky S, Berdichevsky Y, Tamarkin A et al. (2000). Highly efficient selection of phage antibodies mediated by display of antigen as Lpp-OmpA’ fusions on live bacteria. J Mol Biol 301: 893–904.

    Article  CAS  Google Scholar 

  • Brandt O, Dietrich U, Koch J . (2009). Solid-supported peptide arrays in the investigation of protein–protein and protein–nucleic acid interactions. Curr Chem Biol 3: 171–179.

    CAS  Google Scholar 

  • Cochran JR, Kim YS, Olsen MJ, Bhandari R, Wittrup KD . (2004). Domain-level antibody epitope mapping through yeast surface display of epidermal growth factor receptor fragments. J Immunol Methods 287: 147–158.

    Article  CAS  Google Scholar 

  • Georgiou G, Stathopoulos C, Daugherty PS, Nayak AR, Iverson BL, Curtiss III R . (1997). Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol 15: 29–34.

    Article  CAS  Google Scholar 

  • Goldstein NI, Prewett M, Zuklys K, Rockwell P, Mendelsohn J . (1995). Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res 1: 1311–1318.

    CAS  PubMed  Google Scholar 

  • Groner B, Hartmann C, Wels W . (2004). Therapeutic antibodies. Curr Mol Med 4: 539–547.

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K . (1996). VMD: Visual Molecular Dynamics. J Mol Graph 14: 33–38, 27-38.

    Article  CAS  Google Scholar 

  • Hynes NE, Lane HA . (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5: 341–354.

    Article  CAS  Google Scholar 

  • Hynes NE, MacDonald G . (2009). ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 21: 177–184.

    Article  CAS  Google Scholar 

  • Kettleborough CA, Saldanha J, Heath VJ, Morrison CJ, Bendig MM . (1991). Humanization of a mouse monoclonal antibody by CDR-grafting: the importance of framework residues on loop conformation. Protein Eng 4: 773–783.

    Article  CAS  Google Scholar 

  • Leahy DJ . (2008). A molecular view of anti-ErbB monoclonal antibody therapy. Cancer Cell 13: 291–293.

    Article  CAS  Google Scholar 

  • Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM . (2005). Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7: 301–311.

    Article  CAS  Google Scholar 

  • Maurer-Gebhard M, Schmidt M, Azemar M, Altenschmidt U, Stocklin E, Wels W et al. (1998). Systemic treatment with a recombinant erbB-2 receptor-specific tumor toxin efficiently reduces pulmonary metastases in mice injected with genetically modified carcinoma cells. Cancer Res 58: 2661–2666.

    CAS  PubMed  Google Scholar 

  • Mayrose I, Penn O, Erez E, Rubinstein ND, Shlomi T, Freund NT et al. (2007a). Pepitope: epitope mapping from affinity-selected peptides. Bioinformatics 23: 3244–3246.

    Article  CAS  Google Scholar 

  • Mayrose I, Shlomi T, Rubinstein ND, Gershoni JM, Ruppin E, Sharan R et al. (2007b). Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm. Nucleic Acids Res 35: 69–78.

    Article  CAS  Google Scholar 

  • Mendelsohn J, Baselga J . (2006). Epidermal growth factor receptor targeting in cancer. Semin Oncol 33: 369–385.

    Article  CAS  Google Scholar 

  • Murthy U, Basu A, Rodeck U, Herlyn M, Ross AH, Das M . (1987). Binding of an antagonistic monoclonal antibody to an intact and fragmented EGF-receptor polypeptide. Arch Biochem Biophys 252: 549–560.

    Article  CAS  Google Scholar 

  • Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH et al. (2002). Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110: 775–787.

    Article  CAS  Google Scholar 

  • Partidos CD . (2000). Peptide mimotopes as candidate vaccines. Curr Opin Mol Ther 2: 74–79.

    CAS  PubMed  Google Scholar 

  • Rao S, Starling N, Cunningham D, Benson M, Wotherspoon A, Lupfert C et al. (2008). Phase I study of epirubicin, cisplatin and capecitabine plus matuzumab in previously untreated patients with advanced oesophagogastric cancer. Br J Cancer 99: 868–874.

    Article  CAS  Google Scholar 

  • Riemer AB, Klinger M, Wagner S, Bernhaus A, Mazzucchelli L, Pehamberger H et al. (2004). Generation of peptide mimics of the epitope recognized by trastuzumab on the oncogenic protein Her-2/neu. J Immunol 173: 394–401.

    Article  CAS  Google Scholar 

  • Riemer AB, Kurz H, Klinger M, Scheiner O, Zielinski CC, Jensen-Jarolim E . (2005). Vaccination with cetuximab mimotopes and biological properties of induced anti-epidermal growth factor receptor antibodies. J Natl Cancer Inst 97: 1663–1670.

    Article  CAS  Google Scholar 

  • Sato JD, Kawamoto T, Le AD, Mendelsohn J, Polikoff J, Sato GH . (1983). Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol Biol Med 1: 511–529.

    CAS  PubMed  Google Scholar 

  • Schmidt M, Maurer-Gebhard M, Groner B, Kohler G, Brochmann-Santos G, Wels W . (1999). Suppression of metastasis formation by a recombinant single chain antibody-toxin targeted to full-length and oncogenic variant EGF receptors. Oncogene 18: 1711–1721.

    Article  CAS  Google Scholar 

  • Schmidt M, Wels W . (1996). Targeted inhibition of tumour cell growth by a bispecific single-chain toxin containing an antibody domain and TGF alpha. Br J Cancer 74: 853–862.

    Article  CAS  Google Scholar 

  • Schmiedel J, Blaukat A, Li S, Knochel T, Ferguson KM . (2008). Matuzumab binding to EGFR prevents the conformational rearrangement required for dimerization. Cancer Cell 13: 365–373.

    Article  CAS  Google Scholar 

  • Seiden MV, Burris HA, Matulonis U, Hall JB, Armstrong DK, Speyer J et al. (2007). A phase II trial of EMD72000 (matuzumab), a humanized anti-EGFR monoclonal antibody, in patients with platinum-resistant ovarian and primary peritoneal malignancies. Gynecol Oncol 104: 727–731.

    Article  CAS  Google Scholar 

  • Shomura H, Shichijo S, Matsueda S, Kawakami T, Sato Y, Todo S et al. (2004). Identification of epidermal growth factor receptor-derived peptides immunogenic for HLA-A2(+) cancer patients. Br J Cancer 90: 1563–1571.

    Article  CAS  Google Scholar 

  • Waterfield MD, Mayes EL, Stroobant P, Bennet PL, Young S, Goodfellow PN et al. (1982). A monoclonal antibody to the human epidermal growth factor receptor. J Cell Biochem 20: 149–161.

    Article  CAS  Google Scholar 

  • Wels W, Beerli R, Hellmann P, Schmidt M, Marte BM, Kornilova ES et al. (1995). EGF receptor and p185erbB-2-specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins. Int J Cancer 60: 137–144.

    Article  CAS  Google Scholar 

  • Wels W, Harwerth IM, Mueller M, Groner B, Hynes NE . (1992). Selective inhibition of tumor cell growth by a recombinant single-chain antibody-toxin specific for the erbB-2 receptor. Cancer Res 52: 6310–6317.

    CAS  PubMed  Google Scholar 

  • Yarden Y, Sliwkowski MX . (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Jens Oliver Funk, Merck KGaA for support of this project; Thorsten Geyer, Georg-Speyer-Haus for preparing plasmid pIB-Tx-scFv(225); Dr John Mendelsohn, MD Anderson Cancer Center, Houston for monoclonal antibody cetuximab; Dr Nancy Hynes, Friedrich Miescher Institute, Basel for 15E anti-EGFR antibody; Christian Brendel, Georg-Speyer-Haus for help with CLSM experiments and Dr Stephen Hyland, Georg-Speyer-Haus and Dr Arne Sutter, Merck KGaA for helpful discussions. This work was supported in part by a grant from Merck KGaA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W S Wels.

Ethics declarations

Competing interests

A Blaukat is an employee of Merck KGaA, manufacturer of the drugs matuzumab and cetuximab. The authors declare no other potential conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, C., Müller, N., Blaukat, A. et al. Peptide mimotopes recognized by antibodies cetuximab and matuzumab induce a functionally equivalent anti-EGFR immune response. Oncogene 29, 4517–4527 (2010). https://doi.org/10.1038/onc.2010.195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.195

Keywords

This article is cited by

Search

Quick links