Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inactivation of HAUSP in vivo modulates p53 function

Abstract

Hausp is a deubiquitinase that has been shown to regulate the p53–Mdm2 pathway. Cotransfection of p53 and Hausp stabilizes p53 through the removal of ubiquitin moieties from polyubiquitinated p53. Interestingly, knockout or RNA interference-mediated knockdown of Hausp in human cells also resulted in the stabilization of p53 due to the destabilization of Mdm2, suggesting a dynamic role of Hausp in p53 activation. To understand the physiological functions of Hausp, we generated hausp knockout mice. Hausp knockout mice die during early embryonic development between embryonic days E6.5 and E7.5. The hausp knockout embryos showed p53 activation, but no apparent increase in apoptosis. Embryonic lethality was caused by a dramatic reduction in proliferation and termination in development, in part due to p53 activation and/or abrogation of p53-independent functions. Although deletion of p53 did not completely rescue the embryonic lethality of the hausp knockout, embryonic development was extended in both hausp and p53 double knockout embryos. These data show that Hausp has a critical role in regulating the p53–Mdm2 pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Amerik AY, Li S, Hochstrasser M . (2000). Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae. Biol Chem 381: 981–992.

    Article  CAS  Google Scholar 

  • Babu JR, Jeganathan KB, Baker DJ, Wu X, Kang-Decker N, van Deursen JM . (2003). Rae1 is an essential mitotic checkpoint regulator that cooperates with Bub3 to prevent chromosome missegregation. J Cell Biol 3: 341–353.

    Article  Google Scholar 

  • Becker K, Marchenko ND, Palacios G, Moll UM . (2008). A role of HAUSP in tumor suppression in a human colon carcinoma xenograft model. Cell Cycle 7: 1205–1213.

    Article  CAS  Google Scholar 

  • Chen D, Kon N, Li M, Zhang W, Qin J, Gu W . (2005). ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121: 1071–1083.

    Article  CAS  Google Scholar 

  • Chen X, Ko LJ, Jayaraman L, Prives C . (1996). p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev 1: 2438–2451.

    Article  Google Scholar 

  • Cummins JM, Rago C, Kohli M, Kinzler KW, Lengauer C, Vogelstein B . (2004). Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428: 1.

    Article  Google Scholar 

  • Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P et al. (2004). The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429: 86–92.

    Article  CAS  Google Scholar 

  • Everett RD, Meredith M, Orr A . (1999). The ability of herpes simplex virus type 1 immediate-early protein Vmw110 to bind to a ubiquitin-specific protease contributes to its roles in the activation of gene expression and stimulation of virus replication. J Virol 73: 417–426.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hershko A, Ciechanover A . (1998). The ubiquitin system. Annu Rev Biochem 67: 425–479.

    Article  CAS  Google Scholar 

  • Holowaty MN, Sheng Y, Nguyen T, Arrowsmith C, Frappier L . (2003). Protein interaction domains of the ubiquitin-specific protease, USP7/HAUSP. J Biol Chem 278: 47753–47761.

    Article  CAS  Google Scholar 

  • Hong S, Kim SJ, Ka S, Choi I, Kang S . (2002). USP7, a ubiquitin-specific protease, interacts with ataxin-1, the SCA1 gene product. Mol Cell Neurosci 20: 298–306.

    Article  CAS  Google Scholar 

  • Hu M, Li P, Li M, Li W, Yao T, Wu JW et al. (2002). Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111: 1041–1054.

    Article  CAS  Google Scholar 

  • Hu M, Gu L, Li M, Jeffrey PD, Gu W, Shi Y . (2006). Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway. PLoS Biol 4: e27.

    Article  Google Scholar 

  • Jones SN, Roe AE, Donehower LA, Bradley A . (1995). Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378: 206–208.

    Article  CAS  Google Scholar 

  • Laney JD, Hochstrasser M . (1999). Substrate targeting in the ubiquitin system. Cell 14: 427–430.

    Article  Google Scholar 

  • Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S et al. (2003). Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112: 779–791.

    Article  CAS  Google Scholar 

  • Li E, Bestor TH, Jaenisch R . (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915–926.

    Article  CAS  Google Scholar 

  • Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J et al. (2002). Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416: 648–653.

    Article  CAS  Google Scholar 

  • Li M, Brooks CL, Kon N, Gu W . (2004). A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell 13: 879–886.

    Article  CAS  Google Scholar 

  • Meulmeester E, Maurice MM, Boutell C, Teunisse AF, Ovaa H, Abraham TE et al. (2005). Loss of HAUSP-mediated deubiquitination contributes to DNA damage-induced destabilization of Hdmx and Hdm2. Mol Cell 18: 565–576.

    Article  CAS  Google Scholar 

  • Montes de Oca Luna R, Wagner DS, Lozano G . (1995). Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378: 203–206.

    Article  CAS  Google Scholar 

  • Mori S, Ito G, Usami N, Yoshioka H, Ueda Y, Kodama Y et al. (2004). p53 apoptotic pathway molecules are frequently and simultaneously altered in nonsmall cell lung carcinoma. Cancer 100: 1673–1682.

    Article  CAS  Google Scholar 

  • Niendorf S, Oksche A, Kisser A, Löhler J, Prinz M, Schorle H et al. (2007). Essential role of ubiquitin-specific protease 8 for receptor tyrosine kinase stability and endocytic trafficking in vivo. Mol Cell Biol 27: 5029–5039.

    Article  CAS  Google Scholar 

  • Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK et al. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell 123: 773–786.

    Article  CAS  Google Scholar 

  • Pickart CM, Eddins MJ . (2004). Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 29: 55–72.

    Article  Google Scholar 

  • Sherr CJ, Webber JD . (2000). The ARF/p53 pathway. Curr Opin Genet Dev 10: 94–99.

    Article  CAS  Google Scholar 

  • Sowa ME, Bennett EJ, Gygi SP, Harper JW . (2009). Defining the human deubiquitinating enzyme interaction landscape. Cell 23: 389–403.

    Article  Google Scholar 

  • Tang J, Qu LK, Zhang J, Wang W, Michaelson JS, Degenhardt YY et al. (2006). Critical role for Daxx in regulating Mdm2. Nat Cell Biol 8: 855–862.

    Article  CAS  Google Scholar 

  • van der Horst A, de Vries-Smits AM, Brenkman AB, van Triest MH, van den Broek N, Colland F et al. (2006). FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol 8: 1064–1073.

    Article  CAS  Google Scholar 

  • van der Knaap JA, Kumar BR, Moshkin YM, Langenberg K, Krijgsveld J, Heck AJ et al. (2005). GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7. Mol Cell 17: 695–707.

    Article  CAS  Google Scholar 

  • Wu X, Kasper LH, Mantcheva RT, Mantchev GT, Springett MJ, van Deursen JM . (2001). Disruption of the FG nucleoporin NUP98 causes selective changes in nuclear pore complex stoichiometry and function. Proc Natl Acad Sci USA 13: 3191–3196.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Qiong Li and Xi Sun for their expert assistance with histology. We also thank Dr Chi-Ming Li for helpful suggestions. This study was supported in part by a postdoctoral fellowship from NIH to NK and grants from NIH/NCI to TL and WG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kon, N., Kobayashi, Y., Li, M. et al. Inactivation of HAUSP in vivo modulates p53 function. Oncogene 29, 1270–1279 (2010). https://doi.org/10.1038/onc.2009.427

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.427

Keywords

This article is cited by

Search

Quick links