Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The SWI/SNF complex and cancer

Abstract

The mammalian SWI/SNF complexes mediate ATP-dependent chromatin remodeling processes that are critical for differentiation and proliferation. Not surprisingly, loss of SWI/SNF function has been associated with malignant transformation, and a substantial body of evidence indicates that several components of the SWI/SNF complexes function as tumor suppressors. This review summarizes the evidence that underlies this conclusion, with particular emphasis upon the two catalytic subunits of the SWI/SNF complexes, BRM, the mammalian ortholog of SWI2/SNF2 in yeast and brahma in Drosophila, and Brahma-related gene-1 (BRG1).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Abrams E, Neigeborn L, Carlson M . (1986). Molecular analysis of SNF2 and SNF5, genes required for expression of glucose-repressible genes in Saccharomyces cerevisiae. Mol Cell Biol 6: 3643–3651.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D . (2000). Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter [In Process Citation]. Cell 103: 667–678.

    CAS  PubMed  Google Scholar 

  • An HX, Claas A, Savelyeva L, Seitz S, Schlag P, Scherneck S et al. (1999). Two regions of deletion in 9p23–24 in sporadic breast cancer. Cancer Res 59: 3941–3943.

    CAS  PubMed  Google Scholar 

  • Aoyagi S, Trotter KW, Archer TK . (2005). ATP-dependent chromatin remodeling complexes and their role in nuclear receptor-dependent transcription in vivo. Vitam Horm 70: 281–307.

    CAS  PubMed  Google Scholar 

  • Armstrong JA, Bieker JJ, Emerson BM . (1998). A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell 95: 93–104.

    CAS  PubMed  Google Scholar 

  • Armstrong JA, Papoulas O, Daubresse G, Sperling AS, Lis JT, Scott MP et al. (2002). The Drosophila BRM complex facilitates global transcription by RNA polymerase II. EMBO J 19: 5245–5254.

    Google Scholar 

  • Banine F, Bartlett C, Gunawardena R, Muchardt C, Yaniv M, Knudsen ES et al. (2005). SWI/SNF chromatin-remodeling factors induce changes in DNA methylation to promote transcriptional activation. Cancer Res 65: 3542–3547.

    CAS  PubMed  Google Scholar 

  • Batsche E, Yaniv M, Muchardt C . (2006). The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol 13: 22–29.

    CAS  PubMed  Google Scholar 

  • Belandia B, Orford RL, Hurst HC, Parker MG . (2002). Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes. EMBO J 21: 4094–4103.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biegel JA, Fogelgren B, Zhou JY, James CD, Janss AJ, Allen JC et al. (2000). Mutations of the INI1 rhabdoid tumor suppressor gene in medulloblastomas and primitive neuroectodermal tumors of the central nervous system. Clin Cancer Res 6: 2759–2763.

    CAS  PubMed  Google Scholar 

  • Biegel JA, Kalpana G, Knudsen ES, Packer RJ, Roberts CW, Thiele CJ et al. (2002). The role of INI1 and the SWI/SNF complex in the development of rhabdoid tumors: meeting summary from the workshop on childhood atypical teratoid/rhabdoid tumors. Cancer Res 62: 323–328.

    CAS  PubMed  Google Scholar 

  • Biegel JA, Pollack IF . (2004). Molecular analysis of pediatric brain tumors. Curr Oncol Rep 6: 445–452.

    PubMed  Google Scholar 

  • Bochar DA, Wang L, Beniya H, Kinev A, Xue Y, Lane WS et al. (2000). BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102: 257–265.

    CAS  PubMed  Google Scholar 

  • Bortvin A, Winston F . (1996). Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272: 1473–1476.

    CAS  PubMed  Google Scholar 

  • Bourachot B, Yaniv M, Muchardt C . (1999). The activity of mammalian brm/SNF2alpha is dependent on a high-mobility- group protein I/Y-like DNA binding domain. Mol Cell Biol 19: 3931–3939.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourachot B, Yaniv M, Muchardt C . (2003). Growth inhibition by the mammalian SWI-SNF subunit Brm is regulated by acetylation. EMBO J 22: 6505–6515.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourdeaut F, Freneaux P, Thuille B, Lellouch-Tubiana A, Nicolas A, Couturier J et al. (2007). hSNF5/INI1-deficient tumours and rhabdoid tumours are convergent but not fully overlapping entities. J Pathol 211: 323–330.

    CAS  PubMed  Google Scholar 

  • Brockmann D, Lehmkuhler O, Schmucker U, Esche H . (2001). The histone acetyltransferase activity of PCAF cooperates with the brahma/SWI2-related protein BRG-1 in the activation of the enhancer A of the MHC class I promoter. Gene 277: 111–120.

    CAS  PubMed  Google Scholar 

  • Brumby AM, Zraly CB, Horsfield JA, Secombe J, Saint R, Dingwall AK et al. (2002). Drosophila cyclin E interacts with components of the Brahma complex. EMBO J 21: 3377–3389.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J, Gilliam A et al. (2000). A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell 6: 1287–1295.

    CAS  PubMed  Google Scholar 

  • Bultman SJ, Herschkowitz JI, Godfrey V, Gebuhr TC, Yaniv M, Perou CM et al. (2008). Characterization of mammary tumors from Brg1 heterozygous mice. Oncogene 27: 460–468.

    CAS  PubMed  Google Scholar 

  • Cairns BR, Erdjument-Bromage H, Tempst P, Winston F, Kornberg RD . (1998). Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF. Mol Cell 2: 639–651.

    CAS  PubMed  Google Scholar 

  • Carlson M, Laurent BC . (1994). The SNF/SWI family of global transcriptional activators. Curr Opin Cell Biol 6: 396–402.

    CAS  PubMed  Google Scholar 

  • Carlson M, Osmond BC, Botstein D . (1981). Mutants of yeast defective in sucrose utilization. Genetics 98: 25–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chai B, Huang J, Cairns BR, Laurent BC . (2005). Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev 19: 1656–1661.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Archer TK . (2005). Regulating SWI/SNF subunit levels via protein-protein interactions and proteasomal degradation: BAF155 and BAF170 limit expression of BAF57. Mol Cell Biol 25: 9016–9027.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chi TH, Wan M, Lee PP, Akashi K, Metzger D, Chambon P et al. (2003). Sequential roles of Brg, the ATPase subunit of BAF chromatin remodeling complexes, in thymocyte development. Immunity 19: 169–182.

    CAS  PubMed  Google Scholar 

  • Chi TH, Wan M, Zhao K, Taniuchi I, Chen L, Littman DR et al. (2002). Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes. Nature 418: 195–199.

    CAS  PubMed  Google Scholar 

  • Chiba H, Muramatsu M, Nomoto A, Kato H . (1994). Two human homologues of Saccharomyces cerevisiae SWI2/SNF2 and Drosophila brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor. Nucleic Acids Res 22: 1815–1820.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi EY, Park JA, Sung YH, Kwon H . (2001a). Generation of the dominant-negative mutant of hArpNbeta: a component of human SWI/SNF chromatin remodeling complex. Exp Cell Res 271: 180–188.

    CAS  PubMed  Google Scholar 

  • Choi YI, Jeon SH, Jang J, Han S, Kim JK, Chung H et al. (2001b). Notch1 confers a resistance to glucocorticoid-induced apoptosis on developing thymocytes by down-regulating SRG3 expression. Proc Natl Acad Sci USA 98: 10267–10272.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Claudio PP, Howard CM, Fu Y, Cinti C, Califano L, Micheli P et al. (2000). Mutations in the retinoblastoma-related gene RB2/p130 in primary nasopharyngeal carcinoma. Cancer Res 60: 8–12.

    CAS  PubMed  Google Scholar 

  • Coisy-Quivy M, Disson O, Roure V, Muchardt C, Blanchard JM, Dantonel JC . (2006). Role for brm in cell growth control. Cancer Res 66: 5069–5076.

    CAS  PubMed  Google Scholar 

  • Collins RT, Furukawa T, Tanese N, Treisman JE . (1999). Osa associates with the Brahma chromatin remodeling complex and promotes the activation of some target genes. EMBO J 18: 7029–7040.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cote J, Quinn J, Workman JL, Peterson CL . (1994). Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265: 53–60.

    CAS  PubMed  Google Scholar 

  • Cui K, Tailor P, Liu H, Chen X, Ozato K, Zhao K . (2004). The chromatin-remodeling BAF complex mediates cellular antiviral activities by promoter priming. Mol Cell Biol 24: 4476–4486.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dahiya A, Gavin MR, Luo RX, Dean DC . (2000). Role of the LXCXE binding site in Rb function. Mol Cell Biol 20: 6799–6805.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Y, Ngo D, Jacob J, Forman LW, Faller DV . (2008). Prohibitin and the SWI/SNF ATPase subunit BRG1 are required for effective androgen antagonist-mediated transcriptional repression of androgen receptor-regulated genes. Carcinogenesis 29: 1725–1733.

    CAS  PubMed  PubMed Central  Google Scholar 

  • de La Serna IL, Carlson KA, Imbalzano AN . (2001a). Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nat Genet 27: 187–190.

    CAS  PubMed  Google Scholar 

  • de La Serna IL, Roy K, Carlson KA, Imbalzano AN . (2001b). MyoD can induce cell cycle arrest but not muscle differentiation in the presence of dominant negative SWI/SNF chromatin remodeling enzymes. J Biol Chem 276: 41486–41491.

    CAS  PubMed  Google Scholar 

  • Debril MB, Gelman L, Fayard E, Annicotte JS, Rocchi S, Auwerx J . (2004). Transcription factors and nuclear receptors interact with the SWI/SNF complex through the BAF60c subunit. J Biol Chem 279: 16677–16686.

    CAS  PubMed  Google Scholar 

  • DeCristofaro MF, Betz BL, Rorie CJ, Reisman DN, Wang W, Weissman BE . (2001). Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies. J Cell Physiol 186: 136–145.

    CAS  PubMed  Google Scholar 

  • Dingwall AK, Beek SJ, McCallum CM, Tamkun JW, Kalpana GV, Goff SP et al. (1995). The Drosophila snr1 and brm proteins are related to yeast SWI/SNF proteins and are components of a large protein complex. Mol Biol Cell 6: 777–791.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doan DN, Veal TM, Yan Z, Wang W, Jones SN, Imbalzano AN . (2004). Loss of the INI1 tumor suppressor does not impair the expression of multiple BRG1-dependent genes or the assembly of SWI/SNF enzymes. Oncogene 23: 3462–3473.

    CAS  PubMed  Google Scholar 

  • Dunaief JL, Strober BE, Guha S, Khavari PA, Alin K, Luban J et al. (1994). The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79: 119–130.

    CAS  PubMed  Google Scholar 

  • Eiriksdottir G, Sigurdsson A, Jonasson JG, Agnarsson BA, Sigurdsson H, Gudmundsson J et al. (1995). Loss of heterozygosity on chromosome 9 in human breast cancer: association with clinical variables and genetic changes at other chromosome regions. Int J Cancer 64: 378–382.

    CAS  PubMed  Google Scholar 

  • Elfring LK, Deuring R, McCallum CM, Peterson CL, Tamkun JW . (1994). Identification and characterization of Drosophila relatives of the yeast transcriptional activator SNF2/SWI2. Mol Cell Biol 14: 2225–2234.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flajollet S, Lefebvre B, Cudejko C, Staels B, Lefebvre P . (2007). The core component of the mammalian SWI/SNF complex SMARCD3/BAF60c is a coactivator for the nuclear retinoic acid receptor. Mol Cell Endocrinol 270: 23–32.

    CAS  PubMed  Google Scholar 

  • Foster KS, McCrary WJ, Ross JS, Wright CF . (2006). Members of the hSWI/SNF chromatin remodeling complex associate with and are phosphorylated by protein kinase B/Akt. Oncogene 25: 4605–4612.

    CAS  PubMed  Google Scholar 

  • Fry CJ, Peterson CL . (2001). Chromatin remodeling enzymes: who's on first? Curr Biol 11: R185–R197.

    CAS  PubMed  Google Scholar 

  • Fryer CJ, Archer TK . (1998). Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature 393: 88–91.

    CAS  PubMed  Google Scholar 

  • Fukuoka J, Fujii T, Shih JH, Dracheva T, Meerzaman D, Player A et al. (2004). Chromatin remodeling factors and BRM/BRG1 expression as prognostic indicators in non-small cell lung cancer. Clin Cancer Res 10: 4314–4324.

    CAS  PubMed  Google Scholar 

  • Gaillard H, Fitzgerald DJ, Smith CL, Peterson CL, Richmond TJ, Thoma F . (2003). Chromatin remodeling activities act on UV-damaged nucleosomes and modulate DNA damage accessibility to photolyase. J Biol Chem 278: 17655–17663.

    CAS  PubMed  Google Scholar 

  • Gao CF, Ren S, Wang J, Zhang SL, Jin F, Nakajima T et al. (2002). P130 and its truncated form mediate p53-induced cell cycle arrest in Rb(−/−) Saos2 cells. Oncogene 21: 7569–7579.

    CAS  PubMed  Google Scholar 

  • Gao X, Tate P, Hu P, Tjian R, Skarnes WC, Wang Z . (2008). ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc Natl Acad Sci USA 105: 6656–6661.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gebuhr TC, Kovalev GI, Bultman S, Godfrey V, Su L, Magnuson T . (2003). The role of Brg1, a catalytic subunit of mammalian chromatin-remodeling complexes, in T cell development. J Exp Med 198: 1937–1949.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Girard L, Zochbauer-Muller S, Virmani AK, Gazdar AF, Minna JD . (2000). Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res 60: 4894–4906.

    CAS  PubMed  Google Scholar 

  • Glaros S, Cirrincione GM, Muchardt C, Kleer CG, Michael CW, Reisman D . (2007). The reversible epigenetic silencing of BRM: implications for clinical targeted therapy. Oncogene 26: 7058–7066.

    CAS  PubMed  Google Scholar 

  • Glaros S, Cirrincione GM, Palanca A, Metzger D, Reisman D . (2008). Targeted knockout of BRG1 potentiates lung cancer development. Cancer Res 68: 3689–3696.

    CAS  PubMed  Google Scholar 

  • Golding A, Chandler S, Ballestar E, Wolffe AP, Schlissel MS . (1999). Nucleosome structure completely inhibits in vitro cleavage by the V(D)J recombinase. EMBO J 18: 3712–3723.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong F, Fahy D, Liu H, Wang W, Smerdon MJ . (2008). Role of the mammalian SWI/SNF chromatin remodeling complex in the cellular response to UV damage. Cell Cycle 7: 1067–1074.

    CAS  PubMed  Google Scholar 

  • Gorlov I . (2005). Identification of a novel lung cancer candidate susceptibility gene using a familial aggregation approach. Proceedings of the 97th Annual AACR Meeting, Washington, DC 3: 41.

    Google Scholar 

  • Grand F, Kulkarni S, Chase A, Goldman JM, Gordon M, Cross NC . (1999). Frequent deletion of hSNF5/INI1, a component of the SWI/SNF complex, in chronic myeloid leukemia. Cancer Res 59: 3870–3874.

    CAS  PubMed  Google Scholar 

  • Gunduz E, Gunduz M, Ouchida M, Nagatsuka H, Beder L, Tsujigiwa H et al. (2005). Genetic and epigenetic alterations of BRG1 promote oral cancer development. Int J Oncol 26: 201–210.

    CAS  PubMed  Google Scholar 

  • Han D, Jeon S, Sohn DH, Lee C, Ahn S, Kim WK et al. (2008). SRG3, a core component of mouse SWI/SNF complex, is essential for extra-embryonic vascular development. Dev Biol 315: 136–146.

    CAS  PubMed  Google Scholar 

  • Hara R, Sancar A . (2002). The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome core particle. Mol Cell Biol 22: 6779–6787.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan AH, Neely KE, Vignali M, Reese JC, Workman JL . (2001). Promoter targeting of chromatin-modifying complexes. Front Biosci 6: D1054–D1064.

    CAS  PubMed  Google Scholar 

  • Hendricks KB, Shanahan F, Lees E . (2004). Role for BRG1 in cell cycle control and tumor suppression. Mol Cell Biol 24: 362–376.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill DA, Chiosea S, Jamaluddin S, Roy K, Fischer AH, Boyd DD et al. (2004). Inducible changes in cell size and attachment area due to expression of a mutant SWI/SNF chromatin remodeling enzyme. J Cell Sci 117: 5847–5854.

    CAS  PubMed  Google Scholar 

  • Hirschhorn JN, Brown SA, Clark CD, Winston F . (1992). Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev 6: 2288–2298.

    CAS  PubMed  Google Scholar 

  • Hong CY, Suh JH, Kim K, Gong EY, Jeon SH, Ko M et al. (2005). Modulation of androgen receptor transactivation by the SWI3-related gene product (SRG3) in multiple ways. Mol Cell Biol 25: 4841–4852.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao PW, Fryer CJ, Trotter KW, Wang W, Archer TK . (2003). BAF60a mediates critical interactions between nuclear receptors and the BRG1 chromatin-remodeling complex for transactivation. Mol Cell Biol 23: 6210–6220.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Zhao YL, Li Y, Fletcher JA, Xiao S . (2007). Genomic and functional evidence for an ARID1A tumor suppressor role. Genes Chromosomes Cancer 46: 745–750.

    CAS  PubMed  Google Scholar 

  • Huang M, Qian F, Hu Y, Ang C, Li Z, Wen Z . (2002). Chromatin-remodelling factor BRG1 selectively activates a subset of interferon-alpha-inducible genes. Nat Cell Biol 4: 774–781.

    CAS  PubMed  Google Scholar 

  • Hurlstone AF, Olave IA, Barker N, van Noort M, Clevers H . (2002). Cloning and characterization of hELD/OSA1, a novel BRG1 interacting protein. Biochem J 364: 255–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ichinose H, Garnier JM, Chambon P, Losson R . (1997). Ligand-dependent interaction between the estrogen receptor and the human homologues of SWI2/SNF2. Gene 188: 95–100.

    CAS  PubMed  Google Scholar 

  • Imbalzano AN, Kwon H, Green MR, Kingston RE . (1994). Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370: 481–485.

    CAS  PubMed  Google Scholar 

  • Indra AK, Dupe V, Bornert JM, Messaddeq N, Yaniv M, Mark M et al. (2005). Temporally controlled targeted somatic mutagenesis in embryonic surface ectoderm and fetal epidermal keratinocytes unveils two distinct developmental functions of BRG1 in limb morphogenesis and skin barrier formation. Development 132: 4533–4544.

    CAS  PubMed  Google Scholar 

  • Inoue H, Furukawa T, Giannakopoulos S, Zhou S, King DS, Tanese N . (2002). Largest subunits of the human SWI/SNF chromatin remodeling complex promote transcriptional activation by steroid hormone receptors. J Biol Chem 27: 27.

    Google Scholar 

  • Ito T, Yamauchi M, Nishina M, Yamamichi N, Mizutani T, Ui M et al. (2001). Identification of SWI/SNF complex subunit BAF60a as a determinant of transactivation potential of Fos/Jun dimers. J Biol Chem 276: 2852–2857.

    CAS  PubMed  Google Scholar 

  • Jin YT, Myers J, Tsai ST, Goepfert H, Batsakis JG, el-Naggar AK . (1999). Genetic alterations in oral squamous cell carcinoma of young adults. Oral Oncol 35: 251–256.

    CAS  PubMed  Google Scholar 

  • Kal AJ, Mahmoudi T, Zak NB, Verrijzer CP . (2000). The Drosophila brahma complex is an essential coactivator for the trithorax group protein zeste. Genes Dev 14: 1058–1071.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalpana GV, Marmon S, Wang W, Crabtree GR, Goff SP . (1994). Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5 [see comments]. Science 266: 2002–2006.

    CAS  PubMed  Google Scholar 

  • Kang H, Cui K, Zhao K . (2004). BRG1 controls the activity of the retinoblastoma protein via regulation of p21CIP1/WAF1/SDI. Mol Cell Biol 24: 1188–1199.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kapic A, Helmbold H, Reimer R, Klotzsche O, Deppert W, Bohn W . (2006). Cooperation between p53 and p130(Rb2) in induction of cellular senescence. Cell Death Differ 13: 324–334.

    CAS  PubMed  Google Scholar 

  • Khavari PA, Peterson CL, Tamkun JW, Mendel DB, Crabtree GR . (1993). BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366: 170–174.

    CAS  PubMed  Google Scholar 

  • Kitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui D et al. (2003). The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome. Cell 113: 905–917.

    CAS  PubMed  Google Scholar 

  • Klochendler-Yeivin A, Picarsky E, Yaniv M . (2006). Increased DNA damage sensitivity and apoptosis in cells lacking the Snf5/Ini1 subunit of the SWI/SNF chromatin remodeling complex. Mol Cell Biol 26: 2661–2674.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko M, Jang J, Ahn J, Lee K, Chung H, Jeon SH et al. (2004). T cell receptor signaling inhibits glucocorticoid-induced apoptosis by repressing the SRG3 expression via Ras activation. J Biol Chem 279: 21903–21915.

    CAS  PubMed  Google Scholar 

  • Kozmik Z, Machon O, Kralova J, Kreslova J, Paces J, Vlcek C . (2001). Characterization of mammalian orthologues of the Drosophila osa gene: cDNA cloning, expression, chromosomal localization, and direct physical interaction with Brahma chromatin-remodeling complex. Genomics 73: 140–148.

    CAS  PubMed  Google Scholar 

  • Kruger W, Peterson CL, Sil A, Coburn C, Arents G, Moudrianakis EN et al. (1995). Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev 9: 2770–2779.

    CAS  PubMed  Google Scholar 

  • Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR . (1994). Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex [see comments]. Nature 370: 477–481.

    CAS  PubMed  Google Scholar 

  • Kwon J, Morshead KB, Guyon JR, Kingston RE, Oettinger MA . (2000). Histone acetylation and hSWI/SNF remodeling act in concert to stimulate V(D)J cleavage of nucleosomal DNA. Mol Cell 6: 1037–1048.

    CAS  PubMed  Google Scholar 

  • Lee CH, Murphy MR, Lee JS, Chung JH . (1999). Targeting a SWI/SNF-related chromatin remodeling complex to the beta-globin promoter in erythroid cells. Proc Natl Acad Sci USA 96: 12311–12315.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee D, Kim JW, Seo T, Hwang SG, Choi EJ, Choe J . (2002). SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription. J Biol Chem 277: 22330–22337.

    CAS  PubMed  Google Scholar 

  • Lee JH, Chang SH, Shim JH, Lee JY, Yoshida M, Kwon H . (2003). Cytoplasmic localization and nucleo-cytoplasmic shuttling of BAF53, a component of chromatin-modifying complexes. Mol Cells 16: 78–83.

    CAS  PubMed  Google Scholar 

  • Lee JH, Lee JY, Chang SH, Kang MJ, Kwon H . (2005). Effects of Ser2 and Tyr6 mutants of BAF53 on cell growth and p53-dependent transcription. Mol Cells 19: 289–293.

    CAS  PubMed  Google Scholar 

  • Lee K, Kang MJ, Kwon SJ, Kwon YK, Kim KW, Lim JH et al. (2007a). Expansion of chromosome territories with chromatin decompaction in BAF53-depleted interphase cells. Mol Biol Cell 18: 4013–4023.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K, Shim JH, Kang MJ, Kim JH, Ahn JS, Yoo SJ et al. (2007b). Association of BAF53 with mitotic chromosomes. Mol Cells 24: 288–293.

    CAS  PubMed  Google Scholar 

  • LeGouy E, Thompson EM, Muchardt C, Renard JP . (1998). Differential preimplantation regulation of two mouse homologues of the yeast SWI2 protein. Dev Dyn 212: 38–48.

    CAS  PubMed  Google Scholar 

  • Lemon B, Inouye C, King DS, Tjian R . (2001). Selectivity of chromatin-remodelling cofactors for ligand-activated transcription. Nature 414: 924–928.

    CAS  PubMed  Google Scholar 

  • Lickert H, Takeuchi JK, Von Both I, Walls JR, McAuliffe F, Adamson SL et al. (2004). Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432: 107–112.

    CAS  PubMed  Google Scholar 

  • Link KA, Burd CJ, Williams E, Marshall T, Rosson G, Henry E et al. (2005). BAF57 governs androgen receptor action and androgen-dependent proliferation through SWI/SNF. Mol Cell Biol 25: 2200–2215.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Kang H, Liu R, Chen X, Zhao K . (2002). Maximal induction of a subset of interferon target genes requires the chromatin-remodeling activity of the BAF complex. Mol Cell Biol 22: 6471–6479.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Luo Y, Lin FT, Lin WC . (2004). TopBP1 recruits Brg1/Brm to repress E2F1-induced apoptosis, a novel pRb-independent and E2F1-specific control for cell survival. Genes Dev 18: 673–686.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Liu H, Chen X, Kirby M, Brown PO, Zhao K . (2001). Regulation of CSF1 promoter by the SWI/SNF-like BAF complex. Cell 106: 309–318.

    CAS  PubMed  Google Scholar 

  • Manda R, Kohno T, Hamada K, Takenoshita S, Kuwano H, Yokota J . (2000). Absence of hSNF5/INI1 mutation in human lung cancer. Cancer Lett 153: 57–61.

    CAS  PubMed  Google Scholar 

  • Marshall TW, Link KA, Petre-Draviam CE, Knudsen KE . (2003). Differential requirement of SWI/SNF for androgen receptor activity. J Biol Chem 278: 30605–30613.

    CAS  PubMed  Google Scholar 

  • Martens JA, Winston F . (2003). Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr Opin Genet Dev 13: 136–142.

    CAS  PubMed  Google Scholar 

  • Medina PP, Carretero J, Fraga MF, Esteller M, Sidransky D, Sanchez-Cespedes M . (2004). Genetic and epigenetic screening for gene alterations of the chromatin-remodeling factor, SMARCA4/BRG1, in lung tumors. Genes Chromosomes Cancer 41: 170–177.

    CAS  PubMed  Google Scholar 

  • Medina PP, Romero OA, Kohno T, Montuenga LM, Pio R, Yokota J et al. (2008). Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum Mutat 29: 617–622.

    CAS  PubMed  Google Scholar 

  • Menoni H, Gasparutto D, Hamiche A, Cadet J, Dimitrov S, Bouvet P et al. (2007). ATP-dependent chromatin remodeling is required for base excision repair in conventional but not in variant H2A.Bbd nucleosomes. Mol Cell Biol 27: 5949–5956.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizutani T, Ito T, Nishina M, Yamamichi N, Watanabe A, Iba H . (2002). Maintenance of integrated proviral gene expression requires Brm, a catalytic subunit of SWI/SNF complex. J Biol Chem 277: 15859–15864.

    CAS  PubMed  Google Scholar 

  • Monahan BJ, Villen J, Marguerat S, Bahler J, Gygi SP, Winston F . (2008). Fission yeast SWI/SNF and RSC complexes show compositional and functional differences from budding yeast. Nat Struct Mol Biol 15: 873–880.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison AJ, Shen X . (2006). Chromatin modifications in DNA repair. Results Probl Cell Differ 41: 109–125.

    CAS  PubMed  Google Scholar 

  • Morshead KB, Ciccone DN, Taverna SD, Allis CD, Oettinger MA . (2003). Antigen receptor loci poised for V(D)J rearrangement are broadly associated with BRG1 and flanked by peaks of histone H3 dimethylated at lysine 4. Proc Natl Acad Sci USA 100: 11577–11582.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muchardt C, Bourachot B, Reyes JC, Yaniv M . (1998). ras transformation is associated with decreased expression of the brm/SNF2alpha ATPase from the mammalian SWI–SNF complex. EMBO J 17: 223–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muchardt C, Yaniv M . (1993). A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J 12: 4279–4290.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muchardt C, Yaniv M . (1999a). ATP-dependent chromatin remodelling: SWI/SNF and Co. are on the job. J Mol Biol 293: 187–198.

    CAS  PubMed  Google Scholar 

  • Muchardt C, Yaniv M . (1999b). The mammalian SWI/SNF complex and the control of cell growth. Semin Cell Dev Biol 10: 189–195.

    CAS  PubMed  Google Scholar 

  • Muchardt C, Yaniv M . (2001). When the SWI/SNF complex remodels.the cell cycle. Oncogene 20: 3067–3075.

    CAS  PubMed  Google Scholar 

  • Mudhasani R, Fontes JD . (2002). The class II transactivator requires brahma-related gene 1 to activate transcription of major histocompatibility complex class II genes. Mol Cell Biol 22: 5019–5026.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy DJ, Hardy S, Engel DA . (1999). Human SWI–SNF component BRG1 represses transcription of the c-fos gene. Mol Cell Biol 19: 2724–2733.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagl Jr NG, Wang X, Patsialou A, Van Scoy M, Moran E . (2007). Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control. EMBO J 26: 752–763.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagl Jr NG, Zweitzig DR, Thimmapaya B, Beck Jr GR, Moran E . (2006). The c-myc gene is a direct target of mammalian SWI/SNF-related complexes during differentiation-associated cell cycle arrest. Cancer Res 66: 1289–1293.

    CAS  PubMed  Google Scholar 

  • Nasmyth K, Shore D . (1987). Transcriptional regulation in the yeast life cycle. Science 237: 1162–1170.

    CAS  PubMed  Google Scholar 

  • Neely KE, Workman JL . (2002). The complexity of chromatin remodeling and its links to cancer. Biochim Biophys Acta 1603: 19–29.

    CAS  PubMed  Google Scholar 

  • Neigeborn L, Carlson M . (1984). Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108: 845–858.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neigeborn L, Carlson M . (1987). Mutations causing constitutive invertase synthesis in yeast: genetic interactions with snf mutations. Genetics 115: 247–253.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neville EM, Stewart M, Myskow M, Donnelly RJ, Field JK . (1995). Loss of heterozygosity at 9p23 defines a novel locus in non-small cell lung cancer. Oncogene 11: 581–585.

    CAS  PubMed  Google Scholar 

  • Nie Z, Xue Y, Yang D, Zhou S, Deroo BJ, Archer TK et al. (2000). A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex. Mol Cell Biol 20: 8879–8888.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nie Z, Yan Z, Chen EH, Sechi S, Ling C, Zhou S et al. (2003). Novel SWI/SNF chromatin-remodeling complexes contain a mixed-lineage leukemia chromosomal translocation partner. Mol Cell Biol 23: 2942–2952.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osipovich O, Cobb RM, Oestreich KJ, Pierce S, Ferrier P, Oltz EM . (2007). Essential function for SWI-SNF chromatin-remodeling complexes in the promoter-directed assembly of Tcrb genes. Nat Immunol 8: 809–816.

    CAS  PubMed  Google Scholar 

  • Osley MA, Tsukuda T, Nickoloff JA . (2007). ATP-dependent chromatin remodeling factors and DNA damage repair. Mutat Res 618: 65–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ostlund Farrants AK, Blomquist P, Kwon H, Wrange O . (1997). Glucocorticoid receptor-glucocorticoid response element binding stimulates nucleosome disruption by the SWI/SNF complex. Mol Cell Biol 17: 895–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otsuki T, Furukawa Y, Ikeda K, Endo H, Yamashita T, Shinohara A et al. (2001). Fanconi anemia protein, FANCA, associates with BRG1, a component of the human SWI/SNF complex. Hum Mol Genet 10: 2651–2660.

    CAS  PubMed  Google Scholar 

  • Papoulas O, Beek SJ, Moseley SL, McCallum CM, Sarte M, Shearn A et al. (1998). The Drosophila trithorax group proteins BRM, ASH1 and ASH2 are subunits of distinct protein complexes. Development 125: 3955–3966.

    CAS  PubMed  Google Scholar 

  • Park JH, Park EJ, Lee HS, Kim SJ, Hur SK, Imbalzano AN et al. (2006). Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction. EMBO J 25: 3986–3997.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patenge N, Elkin SK, Oettinger MA . (2004). ATP-dependent remodeling by SWI/SNF and ISWI proteins stimulates V(D)J cleavage of 5 S arrays. J Biol Chem 279: 35360–35367.

    CAS  PubMed  Google Scholar 

  • Peterson CL . (1998). SWI/SNF complex: dissection of a chromatin remodeling cycle. Cold Spring Harb Symp Quant Biol 63: 545–552.

    CAS  PubMed  Google Scholar 

  • Peterson CL, Dingwall A, Scott MP . (1994). Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement [see comments]. Proc Natl Acad Sci USA 91: 2905–2908.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson CL, Tamkun JW . (1995). The SWI–SNF complex: a chromatin remodeling machine? Trends Biochem Sci 20: 143–146.

    CAS  PubMed  Google Scholar 

  • Peterson CL, Workman JL . (2000). Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr Opin Genet Dev 10: 187–192.

    CAS  PubMed  Google Scholar 

  • Peterson CL, Zhao Y, Chait BT . (1998). Subunits of the yeast SWI/SNF complex are members of the actin-related protein (ARP) family. J Biol Chem 273: 23641–23644.

    CAS  PubMed  Google Scholar 

  • Phelan ML, Sif S, Narlikar GJ, Kingston RE . (1999). Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol Cell 3: 247–253.

    CAS  PubMed  Google Scholar 

  • Pottier N, Cheok MH, Yang W, Assem M, Tracey L, Obenauer JC et al. (2007). Expression of SMARCB1 modulates steroid sensitivity in human lymphoblastoid cells: identification of a promoter SNP that alters PARP1 binding and SMARCB1 expression. Hum Mol Genet 16: 2261–2271.

    CAS  PubMed  Google Scholar 

  • Reisman DN, Sciarrotta J, Bouldin TW, Weissman BE, Funkhouser WK . (2005). The expression of the SWI/SNF ATPase subunits BRG1 and BRM in normal human tissues. Appl Immunohistochem Mol Morphol 13: 66–74.

    CAS  PubMed  Google Scholar 

  • Reisman DN, Sciarrotta J, Wang W, Funkhouser WK, Weissman BE . (2003). Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis. Cancer Res 63: 560–566.

    CAS  PubMed  Google Scholar 

  • Reisman DN, Strobeck MW, Betz BL, Sciariotta J, Funkhouser Jr W, Murchardt C et al. (2002). Concomitant down-regulation of BRM and BRG1 in human tumor cell lines: differential effects on RB-mediated growth arrest vs CD44 expression. Oncogene 21: 1196–1207.

    CAS  PubMed  Google Scholar 

  • Reyes JC, Barra J, Muchardt C, Camus A, Babinet C, Yaniv M . (1998). Altered control of cellular proliferation in the absence of mammalian brahma (SNF2alpha). EMBO J 17: 6979–6991.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ring HZ, Vameghi-Meyers V, Wang W, Crabtree GR, Francke U . (1998). Five SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin (SMARC) genes are dispersed in the human genome. Genomics 51: 140–143.

    CAS  PubMed  Google Scholar 

  • Roberts CW, Leroux MM, Fleming MD, Orkin SH . (2002). Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2: 415–425.

    CAS  PubMed  Google Scholar 

  • Roberts CW, Orkin SH . (2004). The SWI/SNF complex—chromatin and cancer. Nat Rev Cancer 4: 133–142.

    CAS  PubMed  Google Scholar 

  • Rousseau-Merck MF, Versteege I, Legrand I, Couturier J, Mairal A, Delattre O et al. (1999). hSNF5/INI1 inactivation is mainly associated with homozygous deletions and mitotic recombinations in rhabdoid tumors. Cancer Res 59: 3152–3156.

    CAS  PubMed  Google Scholar 

  • Roy K, De La Serna IL, Imbalzano AN . (2002). The myogenic basic helix-loop-helix family of transcription factors show similar requirements for SWI/SNF chromatin remodeling enzymes during muscle differentiation in culture. J Biol Chem 8: 8.

    Google Scholar 

  • Sabah M, Cummins R, Leader M, Kay E . (2005). Leiomyosarcoma and malignant fibrous histiocytoma share similar allelic imbalance pattern at 9p. Virchows Arch 446: 251–258.

    PubMed  Google Scholar 

  • Saha A, Wittmeyer J, Cairns BR . (2006). Mechanisms for nucleosome movement by ATP-dependent chromatin remodeling complexes. Results Probl Cell Differ 41: 127–148.

    CAS  PubMed  Google Scholar 

  • Sarkar S, Roy BC, Hatano N, Aoyagi T, Gohji K, Kiyama R . (2002). A novel ankyrin repeat-containing gene (Kank) located at 9p24 is a growth suppressor of renal cell carcinoma. J Biol Chem 277: 36585–36591.

    CAS  PubMed  Google Scholar 

  • Schnitzler G, Sif S, Kingston RE . (1998). Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell 94: 17–27.

    CAS  PubMed  Google Scholar 

  • Schwartz YB, Boykova T, Belyaeva ES, Ashburner M, Zhimulev IF . (2004). Molecular characterization of the singed wings locus of Drosophila melanogaster. BMC Genet 5: 15.

    PubMed  PubMed Central  Google Scholar 

  • Sekine I, Sato M, Sunaga N, Toyooka S, Peyton M, Parsons R et al. (2005). The 3p21 candidate tumor suppressor gene BAF180 is normally expressed in human lung cancer. Oncogene 24: 2735–2738.

    CAS  PubMed  Google Scholar 

  • Sentani K, Oue N, Kondo H, Kuraoka K, Motoshita J, Ito R et al. (2001). Increased expression but not genetic alteration of BRG1, a component of the SWI/SNF complex, is associated with the advanced stage of human gastric carcinomas. Pathobiology 69: 315–320.

    CAS  PubMed  Google Scholar 

  • Seo S, Herr A, Lim JW, Richardson GA, Richardson H, Kroll KL . (2005a). Geminin regulates neuronal differentiation by antagonizing Brg1 activity. Genes Dev 19: 1723–1734.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seo S, Richardson GA, Kroll KL . (2005b). The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD. Development 132: 105–115.

    CAS  PubMed  Google Scholar 

  • Sevenet N, Lellouch-Tubiana A, Schofield D, Hoang-Xuan K, Gessler M, Birnbaum D et al. (1999a). Spectrum of hSNF5/INI1 somatic mutations in human cancer and genotype- phenotype correlations. Hum Mol Genet 8: 2359–2368.

    CAS  PubMed  Google Scholar 

  • Sevenet N, Sheridan E, Amram D, Schneider P, Handgretinger R, Delattre O . (1999b). Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet 65: 1342–1348.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shanahan F, Seghezzi W, Parry D, Mahony D, Lees E . (1999). Cyclin E associates with BAF155 and BRG1, components of the mammalian SWI–SNF complex, and alters the ability of BRG1 to induce growth arrest. Mol Cell Biol 19: 1460–1469.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shundrovsky A, Smith CL, Lis JT, Peterson CL, Wang MD . (2006). Probing SWI/SNF remodeling of the nucleosome by unzipping single DNA molecules. Nat Struct Mol Biol 13: 549–554.

    CAS  PubMed  Google Scholar 

  • Smith CL, Horowitz-Scherer R, Flanagan JF, Woodcock CL, Peterson CL . (2003). Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nat Struct Biol 10: 141–145.

    CAS  PubMed  Google Scholar 

  • Smith CL, Peterson CL . (2005). A conserved Swi2/Snf2 ATPase motif couples ATP hydrolysis to chromatin remodeling. Mol Cell Biol 25: 5880–5892.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sohn DH, Lee KY, Lee C, Oh J, Chung H, Jeon SH et al. (2007). SRG3 interacts directly with the major components of the SWI/SNF chromatin remodeling complex and protects them from proteasomal degradation. J Biol Chem 282: 10614–10624.

    CAS  PubMed  Google Scholar 

  • Spicuglia S, Kumar S, Yeh JH, Vachez E, Chasson L, Gorbatch S et al. (2002). Promoter activation by enhancer-dependent and -independent loading of activator and coactivator complexes. Mol Cell 10: 1479–1487.

    CAS  PubMed  Google Scholar 

  • Stern M, Jensen R, Herskowitz I . (1984). Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol 178: 853–868.

    CAS  PubMed  Google Scholar 

  • Strobeck MW, DeCristofaro MF, Banine F, Weissman BE, Sherman LS, Knudsen ES . (2001). The BRG-1 subunit of the SWI/SNF complex regulates CD44 expression. J Biol Chem 276: 9273–9278.

    CAS  PubMed  Google Scholar 

  • Strobeck MW, Knudsen KE, Fribourg AF, DeCristofaro MF, Weissman BE, Imbalzano AN et al. (2000). BRG-1 is required for RB-mediated cell cycle arrest. Proc Natl Acad Sci USA 97: 7748–7753.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strobeck MW, Reisman DN, Gunawardena RW, Betz BL, Angus SP, Knudsen KE et al. (2002). Compensation of BRG-1 function by Brm: insight into the role of the core SWI/SNF subunits in RB-signaling. J Biol Chem 21: 21.

    Google Scholar 

  • Strober BE, Dunaief JL, Guha, Goff SP . (1996). Functional interactions between the hBRM/hBRG1 transcriptional activators and the pRB family of proteins. Mol Cell Biol 16: 1576–1583.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sudarsanam P, Iyer VR, Brown PO, Winston F . (2000). Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97: 3364–3369.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sumi-Ichinose C, Ichinose H, Metzger D, Chambon P . (1997). SNF2beta-BRG1 is essential for the viability of F9 murine embryonal carcinoma cells. Mol Cell Biol 17: 5976–5986.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi JK, Lickert H, Bisgrove BW, Sun X, Yamamoto M, Chawengsaksophak K et al. (2007). Baf60c is a nuclear Notch signaling component required for the establishment of left-right asymmetry. Proc Natl Acad Sci USA 104: 846–851.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamkun JW . (1995). The role of brahma and related proteins in transcription and development. Curr Opin Genet Dev 5: 473–477.

    CAS  PubMed  Google Scholar 

  • Tamkun JW, Deuring R, Scott MP, Kissinger M, Pattatucci AM, Kaufman TC et al. (1992). brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68: 561–572.

    CAS  PubMed  Google Scholar 

  • Tripathi A, Dasgupta S, Roy A, Sengupta A, Roy B, Roychowdhury S et al. (2003). Sequential deletions in both arms of chromosome 9 are associated with the development of head and neck squamous cell carcinoma in Indian patients. J Exp Clin Cancer Res 22: 289–297.

    CAS  PubMed  Google Scholar 

  • Trotter KW, Archer TK . (2004). Reconstitution of glucocorticoid receptor-dependent transcription in vivo. Mol Cell Biol 24: 3347–3358.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trotter KW, Archer TK . (2008). The BRG1 transcriptional coregulator. Nucl Recept Signal 6: e004.

    PubMed  PubMed Central  Google Scholar 

  • Trouche D, Le Chalony C, Muchardt C, Yaniv M, Kouzarides T . (1997). RB and hbrm cooperate to repress the activation functions of E2F1. Proc Natl Acad Sci USA 94: 11268–11273.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Underhill C, Qutob MS, Yee SP, Torchia J. (2000). A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J Biol Chem 275: 40463–40470.

    CAS  PubMed  Google Scholar 

  • Valdman A, Nordenskjold A, Fang X, Naito A, Al-Shukri S, Larsson C et al. (2003). Mutation analysis of the BRG1 gene in prostate cancer clinical samples. Int J Oncol 22: 1003–1007.

    CAS  PubMed  Google Scholar 

  • Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R et al. (1998). Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394: 203–206.

    CAS  PubMed  Google Scholar 

  • Vradii D, Wagner S, Doan DN, Nickerson JA, Montecino M, Lian JB et al. (2006). Brg1, the ATPase subunit of the SWI/SNF chromatin remodeling complex, is required for myeloid differentiation to granulocytes. J Cell Physiol 206: 112–118.

    CAS  PubMed  Google Scholar 

  • Wang L, Baiocchi RA, Pal S, Mosialos G, Caligiuri M, Sif S . (2005). The BRG1- and hBRM-associated factor BAF57 induces apoptosis by stimulating expression of the cylindromatosis tumor suppressor gene. Mol Cell Biol 25: 7953–7965.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Gu C, Qi T, Tang W, Wang L, Wang S et al. (2007). BAF53 interacts with p53 and functions in p53-mediated p21-gene transcription. J Biochem 142: 613–620.

    CAS  PubMed  Google Scholar 

  • Wang W . (2003). The SWI/SNF family of ATP-dependent chromatin remodelers: similar mechanisms for diverse functions. Curr Top Microbiol Immunol 274: 143–169.

    CAS  PubMed  Google Scholar 

  • Wang W, Cote J, Xue Y, Zhou S, Khavari PA, Biggar SR et al. (1996a). Purification and biochemical heterogeneity of the mammalian SWI–SNF complex. EMBO J 15: 5370–5382.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Xue Y, Zhou S, Kuo A, Cairns BR, Crabtree GR . (1996b). Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev 10: 2117–2130.

    CAS  PubMed  Google Scholar 

  • Wang X, Nagl Jr NG, Flowers S, Zweitzig D, Dallas PB, Moran E . (2004a). Expression of p270 (ARID1A), a component of human SWI/SNF complexes, in human tumors. Int J Cancer 112: 636.

    CAS  PubMed  Google Scholar 

  • Wang X, Nagl NG, Wilsker D, Van Scoy M, Pacchione S, Yaciuk P et al. (2004b). Two related ARID family proteins are alternative subunits of human SWI/SNF complexes. Biochem J 383: 319–325.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhai W, Richardson JA, Olson EN, Meneses JJ, Firpo MT et al. (2004c). Polybromo protein BAF180 functions in mammalian cardiac chamber maturation. Genes Dev 18: 3106–3116.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winston F, Allis CD . (1999). The bromodomain: a chromatin-targeting module? [news]. Nat Struct Biol 6: 601–604.

    CAS  PubMed  Google Scholar 

  • Wolffe AP . (1994). Transcriptional activation. Switched-on chromatin. Curr Biol 4: 525–528.

    CAS  PubMed  Google Scholar 

  • Wong AK, Shanahan F, Chen Y, Lian L, Ha P, Hendricks K et al. (2000). BRG1, a component of the SWI–SNF complex, is mutated in multiple human tumor cell lines. Cancer Res 60: 6171–6177.

    CAS  PubMed  Google Scholar 

  • Wuebbles RD, Jones PL . (2004). DNA repair in a chromatin environment. Cell Mol Life Sci 61: 2148–2153.

    CAS  PubMed  Google Scholar 

  • Xi Q, He W, Zhang XH, Le HV, Massague J . (2008). Genome-wide impact of the BRG1 SWI/SNF chromatin remodeler on the transforming growth factor beta transcriptional program. J Biol Chem 283: 1146–1155.

    CAS  PubMed  Google Scholar 

  • Xu W, Cho H, Kadam S, Banayo EM, Anderson S, Yates III JR et al. (2004). A methylation-mediator complex in hormone signaling. Genes Dev 18: 144–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue Y, Canman JC, Lee CS, Nie Z, Yang D, Moreno GT et al. (2000). The human SWI/SNF-B chromatin-remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes. Proc Natl Acad Sci USA 97: 13015.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamichi-Nishina M, Ito T, Mizutani T, Yamamichi N, Watanabe H, Iba H . (2003). SW13 cells can transition between two distinct subtypes by switching expression of BRG1 and Brm genes at the post-transcriptional level. J Biol Chem 278: 7422–7430.

    CAS  PubMed  Google Scholar 

  • Yamamichi N, Yamamichi-Nishina M, Mizutani T, Watanabe H, Minoguchi S, Kobayashi N et al. (2005). The Brm gene suppressed at the post-transcriptional level in various human cell lines is inducible by transient HDAC inhibitor treatment, which exhibits antioncogenic potential. Oncogene 24: 5471–5481.

    CAS  PubMed  Google Scholar 

  • Yan Z, Cui K, Murray DM, Ling C, Xue Y, Gerstein A et al. (2005). PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon-responsive genes. Genes Dev 19: 1662–1667.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Wang Z, Sharova L, Sharov AA, Ling C, Piao Y et al. (2008). BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells. Stem Cells 26: 1155–1165.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshinaga SK, Peterson CL, Herskowitz I, Yamamoto KR . (1992). Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science 258: 1598–1604.

    CAS  PubMed  Google Scholar 

  • Yuge M, Nagai H, Uchida T, Murate T, Hayashi Y, Hotta T et al. (2000). HSNF5/INI1 gene mutations in lymphoid malignancy. Cancer Genet Cytogenet 122: 37–42.

    CAS  PubMed  Google Scholar 

  • Zhang B, Chambers KJ, Faller DV, Wang S . (2007). Reprogramming of the SWI/SNF complex for co-activation or co-repression in prohibitin-mediated estrogen receptor regulation. Oncogene 26: 7153–7157.

    CAS  PubMed  Google Scholar 

  • Zhang HS, Gavin M, Dahiya A, Postigo AA, Ma D, Luo RX et al. (2000). Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101: 79–89.

    CAS  PubMed  Google Scholar 

  • Zhao K, Wang W, Rando OJ, Xue Y, Swiderek K, Kuo A et al. (1998). Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95: 625–636.

    CAS  PubMed  Google Scholar 

  • Zraly CB, Middleton FA, Dingwall AK . (2006). Hormone-response genes are direct in vivo regulatory targets of Brahma (SWI/SNF) complex function. J Biol Chem 281: 35305–35315.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Reisman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reisman, D., Glaros, S. & Thompson, E. The SWI/SNF complex and cancer. Oncogene 28, 1653–1668 (2009). https://doi.org/10.1038/onc.2009.4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.4

Keywords

This article is cited by

Search

Quick links