Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition

Abstract

Reexpression of hypermethylated tumor suppressor genes using DNA methyltransferase (DNMT) and histone deacetylase inhibitors occurs by a mechanism whereby promoter demethylation is the dominant event. In support of this model, we found in acute myeloid leukemia cells with hypermethylated p15INK4B and E-cadherin promoters that the DNMT inhibitor, 5-aza-2′-deoxycytidine, induced p15INK4B and E-cadherin expression, and decreased levels of DNA methylation, histone H3 lysine 9 (H3K9) methylation and SUV39H1 associated with p15INK4B and E-cadherin promoters. On the basis of these observations, we examined whether promoter demethylation was dominant to H3K9 demethylation in p15INK4B and E-cadherin reexpression. We observed that SUV39H1 short hairpin RNA and chaetocin, a SUV39H1 inhibitor, induced p15INK4B and E-cadherin expression and H3K9 demethylation without promoter demethylation. Reexpression of hypermethylated p15INK4B and E-cadherin required histone H3K9 demethylation that was achieved directly by inhibiting SUV39H1 expression or activity, or indirectly by decreasing the amount of SUV39H1 associated with the p15INK4B and E-cadherin promoters using 5-aza-2′-deoxycytidine. The results from this study highlight the potential of H3K9 methyltransferases as therapeutic targets for reactivating expression of hypermethylated genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bachman KE, Park BH, Rhee I, Rajagopalan H, Herman JG, Baylin SB et al. (2003). Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3: 89–95.

    Article  CAS  PubMed  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC et al. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120–124.

    Article  CAS  PubMed  Google Scholar 

  • Baylin SB . (2005). DNA methylation and gene silencing in cancer. Nat Clin Prac Oncol 2 (Suppl 1): S4–S11.

    Article  CAS  Google Scholar 

  • Bird A . (2002). DNA methylation patterns and epigenetic memory. Genes Dev 16: 6–21.

    Article  CAS  PubMed  Google Scholar 

  • Boultwood J, Wainscoat JS . (2007). Gene silencing by DNA methylation in haematological malignancies. Br J Haematol 138: 3–11.

    Article  CAS  PubMed  Google Scholar 

  • Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB . (1999). Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21: 103–107.

    Article  CAS  PubMed  Google Scholar 

  • Carbone R, Botrugno OA, Ronzoni S, Insinga A, Di Croce L, Pelicci PG et al. (2006). Recruitment of the histone methyltransferase SUV39H1 and its role in the oncogenic properties of the leukemia-associated PML-retinoic acid receptor fusion protein. Mol Cell Biol 26: 1288–1296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cattaneo F, Nucifora G . (2008). EVI1 recruits the histone methyltransferase SUV39H1 for transcription repression. J Cell Biochem 105: 344–352.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Sinha KK, Senyuk V, Nucifora G . (2003). SUV39H1 interacts with AML1 and abrogates AML1 transactivity. AML1 is methylated in vivo. Oncogene 22: 5229–5537.

    Article  CAS  PubMed  Google Scholar 

  • Christiansen DH, Andersen MK, Pedersen-Bjergaard J . (2003). Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 17: 1813–1819.

    Article  CAS  PubMed  Google Scholar 

  • Coombes MM, Briggs KL, Bone JR, Clayman GL, El-Naggar AK, Dent SY . (2003). Resetting the histone code at CDKN2A in HNSCC by inhibition of DNA methylation. Oncogene 22: 8902–8911.

    Article  CAS  PubMed  Google Scholar 

  • Dodge JE, Munson C, List AF . (2001). KG-1 and KG-1a model the p15 CpG island methylation observed in acute myeloid leukemia patients. Leuk Res 25: 917–925.

    Article  CAS  PubMed  Google Scholar 

  • Egger G, Aparicio AM, Escobar SG, Jones PA . (2007). Inhibition of histone deacetylation does not block resilencing of p16 after 5-Aza-2′-deoxycytidine treatment. Cancer Res 67: 346–353.

    Article  CAS  PubMed  Google Scholar 

  • Egger G, Liang G, Aparicio A, Jones PA . (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature 429: 457–463.

    Article  CAS  PubMed  Google Scholar 

  • Fahrner JA, Eguchi S, Herman JG, Baylin SB . (2002). Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res 62: 7213–7218.

    CAS  PubMed  Google Scholar 

  • Fujita N, Watanabe S, Ichimura T, Tsuruzoe S, Shinkai Y, Tachibana M et al. (2003). Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression. J Biol Chem 278: 24132–24138.

    Article  CAS  PubMed  Google Scholar 

  • Fuks F . (2005). DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Gen Dev 15: 490–495.

    Article  CAS  Google Scholar 

  • Fuks F, Hurd PJ, Deplus R, Kouzarides T . (2003a). The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 31: 2305–2312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T . (2003b). The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278: 4035–4040.

    Article  CAS  PubMed  Google Scholar 

  • Galm O, Herman JG, Baylin SB . (2006). The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev 20: 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert J, Gore SD, Herman JG, Carducci MA . (2004). The clinical application of targeting cancer through histone acetylation and hypomethylation. Clin Cancer Res 10: 4589–4596.

    Article  CAS  PubMed  Google Scholar 

  • Gore SD . (2005). Combination therapy with DNA methyltransferase inhibitors in hematologic malignancies. Nat Clin Prac Oncol 2 (Suppl 1): S30–S35.

    Article  CAS  Google Scholar 

  • Gore SD, Baylin S, Sugar E, Carraway H, Miller CB, Carducci M et al. (2006). Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 66: 6361–6369.

    Article  CAS  PubMed  Google Scholar 

  • Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A . (2005). Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat Chem Biol 1: 143–145.

    Article  CAS  PubMed  Google Scholar 

  • Guldberg P, Worm J, Gronbaek K . (2002). Profiling DNA methylation by melting analysis. Methods 27: 121–127.

    Article  CAS  PubMed  Google Scholar 

  • Herman JG, Baylin SB . (2003). Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349: 2042–2054.

    Article  CAS  PubMed  Google Scholar 

  • Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ, Baylin SB . (1997). Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res 57: 837–841.

    CAS  PubMed  Google Scholar 

  • Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB . (1996a). Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93: 9821–9826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman JG, Jen J, Merlo A, Baylin SB . (1996b). Hypermethylation associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res 56: 722–727.

    CAS  PubMed  Google Scholar 

  • Issa JP . (2003). Decitabine. Curr Opin Oncol 15: 446–451.

    Article  CAS  PubMed  Google Scholar 

  • Jang H, Choi DE, Kim H, Cho EJ, Youn HD . (2007). Cabin1 represses MEF2 transcriptional activity by association with a methyltransferase, SUV39H1. J Biol Chem 282: 11172–11179.

    Article  CAS  PubMed  Google Scholar 

  • Jiemjit A, Fandy TE, Carraway H, Bailey KA, Baylin S, Herman JG et al. (2008). p21(WAF1/CIP1) induction by 5-azacytosine nucleosides requires DNA damage. Oncogene 27: 3615–3623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamoi K, Yamamoto K, Misawa A, Miyake A, Ishida T, Tanaka Y et al. (2006). SUV39H1 interacts with HTLV-1 Tax and abrogates Tax transactivation of HTLV-1 LTR. Retrovirology 3: 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T, Chiba S et al. (1998). The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature 394: 92–96.

    Article  CAS  PubMed  Google Scholar 

  • Kondo Y, Shen L, Issa JP . (2003). Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol Cell Biol 23: 206–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T . (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–120.

    Article  CAS  PubMed  Google Scholar 

  • Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, Kubicek S et al. (2003). Suv39h mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13: 1192–1200.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Kirschmann DA, Wallrath LL . (2002). Does heterochromatin protein 1 always follow code? Proc Natl Acad Sci USA 99 (Suppl 4): 16462–16469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YN, Lee WW, Wang CY, Chao TH, Chen Y, Chen JH . (2005). Regulatory mechanisms controlling human E-cadherin gene expression. Oncogene 24: 8277–8290.

    Article  CAS  PubMed  Google Scholar 

  • Macaluso M, Cinti C, Russo G, Russo A, Giordano A . (2003). pRb2/p130-E2F4/5-HDAC1-SUV39H1-p300 and pRb2/p130-E2F4/5-HDAC1-SUV39H1-DNMT1 multimolecular complexes mediate the transcription of estrogen receptor-alpha in breast cancer. Oncogene 22: 3511–3517.

    Article  CAS  PubMed  Google Scholar 

  • Mal AK . (2006). Histone methyltransferase Suv39h1 represses MyoD-stimulated myogenic differentiation. EMBO J 25: 3323–3334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGarvey KM, Greene E, Fahrner JA, Jenuwein T, Baylin SB . (2007). DNA methylation and complete transcriptional silencing of cancer genes persist after depletion of EZH2. Cancer Res 67: 5097–5102.

    Article  CAS  PubMed  Google Scholar 

  • Melki JR, Vincent PC, Brown RD, Clark SJ . (2000). Hypermethylation of E-cadherin in leukemia. Blood 95: 3208–3213.

    CAS  PubMed  Google Scholar 

  • Melki JR, Vincent PC, Clark SJ . (1999). Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res 59: 3730–3740.

    CAS  PubMed  Google Scholar 

  • Mutskov V, Felsenfeld G . (2004). Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9. EMBO J 23: 138–149.

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA et al. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113: 703–716.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen CT, Weisenberger DJ, Velicescu M, Gonzales FA, Lin JC, Liang G et al. (2002). Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res 62: 6456–6461.

    CAS  PubMed  Google Scholar 

  • Nicolas E, Roumillac C, Trouche D . (2003). Balance between acetylation and methylation of histone H3 lysine 9 on the E2F-responsive dihydrofolate reductase promoter. Mol Cell Biol 23: 1614–1622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen AL, Oulad-Abdelghani M, Ortiz JA, Remboutsika E, Chambon P, Losson R . (2001). Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Mol Cell 7: 729–739.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen SJ, Schneider R, Bauer UM, Bannister AJ, Morrison A, O'Carroll D et al. (2006). Rb targets histone H3 methylation and HP1 to promoters. Nature 412: 561–565.

    Article  Google Scholar 

  • Ogawa M, Sakashita K, Zhao XY, Hayakawa A, Kubota T, Koike K . (2007). Analysis of histone modification around the CpG island region of the p15 gene in acute myeloblastic leukemia. Leuk Res 31: 611–621.

    Article  CAS  PubMed  Google Scholar 

  • Pastural E, Takahashi N, Dong WF, Bainbridge M, Hull A, Pearson D et al. (2007). RIZ1 repression is associated with insulin-like growth factor-1 signaling activation in chronic myeloid leukemia cell lines. Oncogene 26: 1586–1594.

    Article  CAS  PubMed  Google Scholar 

  • Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C et al. (2001). Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107: 323–337.

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer GP, Steigerwald SD, Hansen RS, Gartler SM, Riggs AD . (1990). Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability. Proc Natl Acad Sci USA 87: 8252–8256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preisler HD, Li B, Chen H, Fisher L, Nayini J, Raza A et al. (2001). P15INK4B gene methylation and expression in normal, myelodysplastic, and acute myelogenous leukemia cells and in the marrow cells of cured lymphoma patients. Leukemia 15: 1589–1595.

    Article  CAS  PubMed  Google Scholar 

  • Pruitt K, Zinn RL, Ohm JE, McGarvey KM, Kang SH, Watkins DN et al. (2006). Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet 2: 344–352.

    Article  CAS  Google Scholar 

  • Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M et al. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406: 593–599.

    Article  CAS  PubMed  Google Scholar 

  • Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF et al. (2003). Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12: 1591–1598.

    Article  CAS  PubMed  Google Scholar 

  • Scott SA, Dong WF, Ichinohasama R, Hirsch C, Sheridan D, Sanche SE et al. (2006). 5-Aza-2′-deoxycytidine (decitabine) can relieve p21WAF1 repression in human acute myeloid leukemia by a mechanism involving release of histone deacetylase 1 (HDAC1) without requiring p21WAF1 promoter demethylation. Leuk Res 30: 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Scott SA, Lakshimikuttyamma A, Sheridan DP, Sanche SE, Geyer CR, DeCoteau JF . (2007). Zebularine inhibits human acute myeloid leukemia cell growth in vitro in association with p15INK4B demethylation and reexpression. Exp Hematol 35: 263–273.

    Article  CAS  PubMed  Google Scholar 

  • Shimamoto T, Ohyashiki JH, Ohyashiki K . (2005). Methylation of p15(INK4b) and E-cadherin genes is independently correlated with poor prognosis in acute myeloid leukemia. Leuk Res 29: 653–659.

    Article  CAS  PubMed  Google Scholar 

  • Spensberger D, Delwel R . (2008). A novel interaction between the proto-oncogene Evi1 and histone methyltransferases, SUV39H1 and G9a. FEBS Lett 582: 2761–2767.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van Engeland M, Weijenberg MP et al. (2002). A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 31: 141–149.

    Article  CAS  PubMed  Google Scholar 

  • Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M et al. (2002). G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16: 1779–1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teofili L, Martini M, Luongo M, Diverio D, Capelli G, Breccia M et al. (2003). Hypermethylation of GpG islands in the promoter region of p15(INK4b) in acute promyelocytic leukemia represses p15(INK4b) expression and correlates with poor prognosis. Leukemia 17: 919–924.

    Article  CAS  PubMed  Google Scholar 

  • Tost J, Gut IG . (2007). DNA methylation analysis by pyrosequencing. Nat Protoc 2: 2265–2275.

    Article  CAS  PubMed  Google Scholar 

  • Vandel L, Nicolas E, Vaute O, Ferreira R, Ait-Si-Ali S, Trouche D . (2001). Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol Cell Biol 21: 6484–6494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wozniak RJ, Klimecki WT, Lau SS, Feinstein Y, Futscher BW . (2007). 5-Aza-2′-deoxycytidine-mediated reductions in G9A histone methyltransferase and histone H3 K9 di-methylation levels are linked to tumor suppressor gene reactivation. Oncogene 26: 77–90.

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Terry AV, Singh PB, Gilbert DM . (2005). Differential subnuclear localization and replication timing of histone H3 lysine 9 methylation states. Mol Biol Cell 16: 287228–287281.

    Google Scholar 

  • Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP et al. (2008). Epigenetic silencing of tumour suppressor gene p15: by its antisense RNA. Nature 451: 202–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Li H, Zhou G, Zhang Q, Zhang T, Li J et al. (2007). Transcriptional silencing of the TMS1/ASC tumour suppressor gene by an epigenetic mechanism in hepatocellular carcinoma cells. J Pathol 212: 134–142.

    Article  CAS  PubMed  Google Scholar 

  • Zinn RL, Pruitt K, Eguchi S, Baylin SB, Herman JG . (2007). hTERT is expressed in cancer cell lines despite promoter DNA methylation by preservation of unmethylated DNA and active chromatin around the transcription start site. Cancer Res 67: 194–201.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Canadian Institutes of Health Research, Canada Foundation for Innovation, and the Saskatchewan Health Research Foundation. CRG is a CIHR-RPP New Investigator. AL is a Rethink Breast Cancer PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C R Geyer.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshmikuttyamma, A., Scott, S., DeCoteau, J. et al. Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene 29, 576–588 (2010). https://doi.org/10.1038/onc.2009.361

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.361

Keywords

This article is cited by

Search

Quick links