Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation

Abstract

MicroRNAs (miRNAs) make up a novel class of gene regulators; they function as oncogenes or tumor suppressors by targeting tumor-suppressor genes or oncogenes. A recent study that analysed a large number of human cancer cell lines showed that miR-330 is a potential tumor-suppressor gene. However, the function and molecular mechanism of miR-330 in determining the aggressiveness of human prostate cancer has not been studied. Here, we show that miR-330 is significantly lower expressed in human prostate cancer cell lines than in nontumorigenic prostate epithelial cells. Bioinformatics analyses reveal a conserved target site for miR-330 in the 3′-untranslated region (UTR) of E2F1 at nucleotides 1018–1024. MiR-330 significantly suppressed the activity of a luciferase reporter containing the E2F1-3′-UTR in the cells. This activity could be abolished with the transfection of anti-miR-330 or mutated E2F1-3′-UTR. In addition, the expression level of miR-330 and E2F1 was inversely correlated in cell lines and prostate cancer specimens. After overexpressing of miR-330 in PC-3 cells, cell growth was suppressed by reducing E2F1-mediated Akt phosphorylation and thereby inducing apoptosis. Collectively, this is the first study to show that E2F1 is negatively regulated by miR-330 and also show that miR-330 induces apoptosis in prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Altman DG, Bland JM . (1994). Diagnostic tests: 1. Sensitivity and specificity. BMJ 308: 1552.

    Article  CAS  Google Scholar 

  • Ambros V, Chen X . (2007). The regulation of genes and genomes by small RNAs. Development 134: 1635–1641.

    Article  CAS  Google Scholar 

  • Ayala G, Thompson T, Yang G, Frolov A, Li R, Scardino P et al. (2004). High levels of phosphorylated form of Akt-1 in prostate cancer and non-neoplastic prostate tissues are strong predictors of biochemical recurrence. Clin Cancer Res 10: 6572–6578.

    Article  CAS  Google Scholar 

  • Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al. (2004a). MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101: 11755–11760.

    Article  CAS  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. (2004b). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101: 2999–3004.

    Article  CAS  Google Scholar 

  • Chaussepied M, Ginsberg D . (2004). Transcriptional regulation of AKT activation by E2F. Mol Cell 16: 831–837.

    Article  CAS  Google Scholar 

  • Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231–241.

    Article  CAS  Google Scholar 

  • Davis JN, Wojno KJ, Daignault S, Hofer MD, Kuefer R, Rubin MA et al. (2006). Elevated E2F1 inhibits transcription of the androgen receptor in metastatic hormone-resistant prostate cancer. Cancer Res 66: 11897–11906.

    Article  CAS  Google Scholar 

  • Esquela-Kerscher A, Slack FJ . (2006). Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269.

    Article  CAS  Google Scholar 

  • Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C et al. (2007). Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67: 2456–2468.

    Article  CAS  Google Scholar 

  • Guo X, Chen KH, Guo Y, Liao H, Tang J, Xiao RP . (2007). Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ Res 101: 1113–1122.

    Article  CAS  Google Scholar 

  • Hutvagner G, Zamore PD . (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science 297: 2056–2060.

    Article  CAS  Google Scholar 

  • Hwang HW, Mendell JT . (2007). MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 96 (Suppl): R40–R44.

    PubMed  Google Scholar 

  • John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS . (2004). Human MicroRNA targets. PLoS Biolo 2: 1862–1879.

    CAS  Google Scholar 

  • Johnson DG, Degregori J . (2006). Putting the oncogenic and tumor suppressive activities of E2F into context. Curr Mol Med 6: 731–738.

    CAS  PubMed  Google Scholar 

  • Jovanovic M, Hengartner MO . (2006). miRNAs and apoptosis: RNAs to die for. Oncogene 25: 6176–6187.

    Article  CAS  Google Scholar 

  • Kennedy SG, Wagner AJ, Conzen SD, Jordan J, Bellacosa A, Tsichlis PN et al. (1997). The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 11: 701–713.

    Article  CAS  Google Scholar 

  • Kent OA, Mendell JT . (2006). A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25: 6188–6196.

    Article  CAS  Google Scholar 

  • Kim R, Ohi Y, Inoue H, Aogi K, Toge T . (1999). Introduction of gadd153 gene into gastric cancer cells can modulate sensitivity to anticancer agents in association with apoptosis. Anticancer Res 19: 1779–1783.

    CAS  PubMed  Google Scholar 

  • Krajewski S, Tanaka S, Takayama S, Schibler M J, Fenton W, Reed JC . (1993). Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 53: 4701–4714.

    CAS  Google Scholar 

  • Leung KW, Tsai C H, Hsiao M, Tseng C J, Ger L P, Lee K H et al. (2009). Pin1 overexpression is associated with poor differentiation and survival in oral squamous cell carcinoma. Oncol Rep 21: 1097–1104.

    CAS  PubMed  Google Scholar 

  • Liu K, Paik JC, Wang B, Lin FT, Lin WC . (2006). Regulation of TopBP1 oligomerization by Akt/PKB for cell survival. EMBO J 25: 4795–4807.

    Article  CAS  Google Scholar 

  • Matos P, Oliveira C, Velho S, Goncalves V, da Costa LT, Moyer MP et al. (2008). B-Raf (V600E) cooperates with alternative spliced Rac1b to sustain colorectal cancer cell survival. Gastroenterology 135: 899–906.

    Article  CAS  Google Scholar 

  • Neville PJ, Conti DV, Krumroy LM, Catalona WJ, Suarez BK, Witte JS et al. (2003). Prostate cancer aggressiveness locus on chromosome segment 19q12-q13.1 identified by linkage and allelic imbalance studies. Genes Chromosomes Cancer 36: 332–339.

    Article  CAS  Google Scholar 

  • O′Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.

    Article  Google Scholar 

  • Ohtani K, DeGregori J, Nevins JR . (1995). Regulation of the cyclin E gene by transcription factor E2F1. Proc Natl Acad Sci USA 92: 12146–12150.

    Article  CAS  Google Scholar 

  • Ozen M, Creighton CJ, Ozdemir M, Ittmann M . (2008). Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27: 1788–1793.

    Article  CAS  Google Scholar 

  • Pal P, Xi H, Sun G, Kaushal R, Meeks JJ, Thaxton CS et al. (2007). Tagging SNPs in the kallikrein genes 3 and 2 on 19q13 and their associations with prostate cancer in men of European origin. Hum Genet 122: 251–259.

    Article  CAS  Google Scholar 

  • Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I et al. (2008). E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13: 272–286.

    Article  CAS  Google Scholar 

  • Pierce AM, Schneider-Broussard R, Gimenez-Conti IB, Russell JL, Conti CJ, Johnson DG . (1999). E2F1 has both oncogenic and tumor-suppressive properties in a transgenic model. Mol Cell Biol 19: 6408–6414.

    Article  CAS  Google Scholar 

  • Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T . (2007). MicroRNA expression profiling in prostate cancer. Cancer Res 67: 6130–6135.

    Article  CAS  Google Scholar 

  • Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM . (2000). Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem 275: 9390–9395.

    Article  CAS  Google Scholar 

  • Ruike Y, Ichimura A, Tsuchiya S, Shimizu K, Kunimoto R, Okuno Y et al. (2008). Global correlation analysis for micro-RNA and mRNA expression profiles in human cell lines. J Hum Genet 53: 515–523.

    Article  CAS  Google Scholar 

  • Shiau CW, Yang CC, Kulp SK, Chen KF, Chen CS, Huang JW . (2005). Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPARgamma. Cancer Res 65: 1561–1569.

    Article  CAS  Google Scholar 

  • Slager SL, Schaid DJ, Cunningham JM, McDonnell SK, Marks AF, Peterson BJ et al. (2003). Confirmation of linkage of prostate cancer aggressiveness with chromosome 19q. Am J Hum Genet 72: 759–762.

    Article  CAS  Google Scholar 

  • Stanelle J, Pützer BM . (2006). E2F1-induced apoptosis: turning killers into therapeutics. Trends Mol Med 12: 177–185.

    Article  CAS  Google Scholar 

  • Testa JR, Bellacosa A . (2001). AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA 98: 10983–10985.

    Article  CAS  Google Scholar 

  • Thomas GV, Horvath S, Smith BL, Crosby K, Lebel LA, Schrage M et al. (2004). Antibody-based profiling of the phosphoinositide 3-kinase pathway in clinical prostate cancer. Clin Cancer Res 10: 8351–8356.

    Article  CAS  Google Scholar 

  • Tsuruta F, Masuyama N, Gotoh Y . (2002). The phosphatidylinositol 3-kinase (PI3 K)-Akt pathway suppresses Bax translocation to mitochondria. J Biol Chem 277: 14040–14047.

    Article  CAS  Google Scholar 

  • Tyagi A, Agarwal R, Agarwal C . (2003). Grape seed extract inhibits EGF-induced and constitutively active mitogenic signaling but activates JNK in human prostate carcinoma DU145 cells: possible role in antiproliferation and apoptosis. Oncogene 22: 1302–1316.

    Article  CAS  Google Scholar 

  • Uney JB, Lightman SL . (2006). MicroRNAs and osmotic regulation. Proc Natl Acad Sci USA 103: 15278–15279.

    Article  CAS  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103: 2257–2261.

    Article  CAS  Google Scholar 

  • Zhou H, Li XM, Meinkoth J, Pittman RN . (2000). Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol 151: 483–494.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the grant support from National Cheng Kung University Hospital Grant (NCKUH-9701004 to P-J Lu), National Science Council (NSC 97-2311-B-006-003-MY3 to P-J Lu and NSC-98-3112-B-006-012 to Y-L Chen). We also thank Dr Chen in the Department Urology College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, for his generous gifts of Akt plasmid DNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P-J Lu.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, KH., Chen, YL., Yeh, SD. et al. MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene 28, 3360–3370 (2009). https://doi.org/10.1038/onc.2009.192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.192

Keywords

This article is cited by

Search

Quick links