Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Full-length hdmX transcripts decrease following genotoxic stress

Abstract

Previous studies have suggested that the mdmX gene is constitutively transcribed, and that MdmX protein activity is instead controlled by cellular localization and DNA damage induced Mdm2-mediated ubiquitination leading to proteasomal degradation. In these studies, we report that the human mdmX (hdmX) mRNA is reproducibly decreased in various human cell lines following treatment with various DNA-damaging agents. Repression of hdmX transcripts is observed in DNA-damaged HCT116 colon cancer cells and in isogenic p53−/− cells, suggesting that this effect is p53-independent. Reduction in the amount of hdmX transcript occurs in both human tumor cell lines and primary human diploid fibroblasts, and results in a significant reduction of HdmX protein. Examination of hdmX promoter activity suggests that damage-induced repression of hdmX mRNA is not significantly impacted by transcription initiation. In contrast, changes in hdmX mRNA splicing appear to partly explain the reduction in full-length hdmX mRNA levels in tumor cell lines with the destabilization of full-length hdmX transcripts, potentially through microRNA miR-34a regulation, also impacting transcript levels. Taken together, this study uncovers previously unrecognized cellular mechanisms by which hdmX mRNA levels are kept low following genotoxic stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Bartel F, Schulz J, Bohnke A, Blumke K, Kappler M, Bache M et al. (2005). Significance of HDMX-S (or MDM4) mRNA splice variant overexpression and HDMX gene amplification on primary soft tissue sarcoma prognosis. Int J Cancer 117: 469–475.

    Article  CAS  PubMed  Google Scholar 

  • Betel D, Wilson M, Gabow A, Marks D, Sander C . (2008). microRNA target predictions: the microRNA.org resource: targets and expression. Nucleic Acids Res 36: D149–D153.

    Article  CAS  PubMed  Google Scholar 

  • Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al. (2007). p53-Mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17: 1298–1307.

    Article  CAS  PubMed  Google Scholar 

  • Bottger V, Bottger A, Garcia-Echeverria C, Ramos YFM, van der Eb AJ, Jochemsen AG et al. (1999). Comparative study of the p53–mdm2 and p53–MDMX interfaces. Oncogene 18: 189–199.

    Article  CAS  PubMed  Google Scholar 

  • Chandler DS, Singh RK, Caldwell LC, Bitler JL, Lozano G . (2006). Genotoxic stress induces coordinately regulated alternative splicing of the p53 modulators MDM2 and MDM4. Cancer Res 66: 9502–9508.

    Article  CAS  PubMed  Google Scholar 

  • Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26: 745–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R et al. (2004). Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 24: 5835–5843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Graaf P, Little NA, Ramos YF, Meulmeester E, Letteboer SJ, Jochemsen AG . (2003). Hdmx protein stability is regulated by the ubiquitin ligase activity of Mdm2. J Biol Chem 278: 38315–38324.

    Article  CAS  PubMed  Google Scholar 

  • Dias CS, Liu Y, Yau A, Westrick L, Evans SC . (2006). Regulation of hdm2 by stress-induced hdm2alt1 in tumor and nontumorigenic cell lines correlating with p53 stability. Cancer Res 66: 9467–9473.

    Article  CAS  PubMed  Google Scholar 

  • Eto I . (2006). Nutritional and chemopreventive anti-cancer agents up-regulate expression of p27Kip1, a cyclin-dependent kinase inhibitor, in mouse JB6 epidermal and human MCF7, MDA-MB-321 and AU565 breast cancer cells. Cancer Cell Int 6: 20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM . (2000). Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275: 8945–8951.

    Article  CAS  PubMed  Google Scholar 

  • Gentiletti F, Mancini F, D'Angelo M, Sacchi A, Pontecorvi A, Jochemsen AG et al. (2002). MDMX stability is regulated by p53-induced caspase cleavage in NIH3T3 mouse fibroblasts. Oncogene 21: 867–877.

    Article  CAS  PubMed  Google Scholar 

  • Gertz EM, Yu YK, Agarwala R, Schaffer AA, Altschul SF . (2006). Composition-based statistics and translated nucleotide searches: improving the TBLASTN module of BLAST. BMC Biol 4: 41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilkes DM, Chen L, Chen J . (2006). MDMX regulation of p53 response to ribosomal stress. EMBO J 25: 5614–5625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu J, Kawai H, Nie L, Kitao H, Wiederschain D, Jochemsen AG et al. (2002). Mutual dependence of MDM2 and MDMX in their functional inactivation of p53. J Biol Chem 277: 19251–19254.

    Article  CAS  PubMed  Google Scholar 

  • He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature 447: 1130–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda R, Tanaka H, Yasuda H . (1997). Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420: 25–27.

    Article  CAS  PubMed  Google Scholar 

  • Honda R, Yasuda H . (1999). Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 18: 22–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson MW, Berberich SJ . (1999). Constitutive mdmx expression during cell growth, differentiation, and DNA damage. DNA Cell Biol 18: 693–700.

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Dai MS, Lu SZ, Xu Y, Luo Z, Zhao Y et al. (2006). 14-3-3gamma binds to MDMX that is phosphorylated by UV-activated Chk1, resulting in p53 activation. EMBO J 25: 1207–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS . (2004). Human MicroRNA targets. PLoS Biol 2: e363.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones SN, Roe AE, Donehower LA, Bradley A . (1995). Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378: 206–208.

    Article  CAS  PubMed  Google Scholar 

  • Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM et al. (2002). The human genome browser at UCSC. Genome Res 12: 996–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Chen L, Chen J . (2002). DNA damage induces MDMX nuclear translocation by p53-dependent and -independent mechanisms. Mol Cell Biol 22: 7562–7571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe SW, Sherr CJ . (2003). Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 13: 77–83.

    Article  CAS  PubMed  Google Scholar 

  • Marine JC, Jochemsen AG . (2005). Mdmx as an essential regulator of p53 activity. Biochem Biophys Res Commun 331: 750–760.

    Article  CAS  PubMed  Google Scholar 

  • Migliorini D, Danovi D, Colombo E, Carbone R, Pelicci PG, Marine JC . (2002). Hdmx recruitment into the nucleus by Hdm2 is essential for its ability to regulate p53 stability and transactivation. J Biol Chem 277: 7318–7323.

    Article  CAS  PubMed  Google Scholar 

  • Miyashita T, Reed JC . (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299.

    Article  CAS  PubMed  Google Scholar 

  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ . (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69: 1237–1245.

    Article  CAS  PubMed  Google Scholar 

  • Montes de Oca Luna R, Wagner DS, Lozano G . (1995). Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378: 203–206.

    Article  CAS  PubMed  Google Scholar 

  • Oliner JD, Peitenol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B . (1993). Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362: 857–860.

    Article  CAS  PubMed  Google Scholar 

  • Oren M . (2003). Decision making by p53: life, death and cancer. Cell Death Differ 10: 431–442.

    Article  CAS  PubMed  Google Scholar 

  • Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V, Jochemsen AG et al. (2001). Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 29: 92–95.

    Article  CAS  PubMed  Google Scholar 

  • Ramos YF, Stad R, Attema J, Peltenburg LT, van der Eb AJ, Jochemsen AG . (2001). Aberrant expression of HDMX proteins in tumor cells correlates with wild-type p53. Cancer Res 61: 1839–1842.

    CAS  PubMed  Google Scholar 

  • Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N et al. (2007). Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26: 731–743.

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky H . (2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132: 365–386.

    CAS  PubMed  Google Scholar 

  • Shvarts A, Steegenga W, Ritecon N, Dekker P, Bazuine M et al. (1996). MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J 15: 5349–5357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A et al. (2007). Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6: 1586–1593.

    Article  CAS  PubMed  Google Scholar 

  • Toledo F, Wahl GM . (2006). Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6: 909–923.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki L . (2003). Role of the RB tumor suppressor in cancer. Cancer Treat Res 115: 209–239.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Berberich laboratory for their insightful discussions. This work was supported by NIH CA66430 (to SJB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S J Berberich.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markey, M., Berberich, S. Full-length hdmX transcripts decrease following genotoxic stress. Oncogene 27, 6657–6666 (2008). https://doi.org/10.1038/onc.2008.266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.266

Keywords

This article is cited by

Search

Quick links