Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by Orlistat

Abstract

Human fatty acid synthase (FAS) is uniquely expressed at high levels in many tumor types. Pharmacological inhibition of FAS therefore represents an important therapeutic opportunity. The drug Orlistat, which has been approved by the US Food and Drug Administration, inhibits FAS, induces tumor cell–specific apoptosis and inhibits the growth of prostate tumor xenografts. We determined the 2.3-Å-resolution crystal structure of the thioesterase domain of FAS inhibited by Orlistat. Orlistat was captured in the active sites of two thioesterase molecules as a stable acyl-enzyme intermediate and as the hydrolyzed product. The details of these interactions reveal the molecular basis for inhibition and suggest a mechanism for acyl-chain length discrimination during the FAS catalytic cycle. Our findings provide a foundation for the development of new cancer drugs that target FAS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FAS and the covalent thioesterase–Orlistat complex.
Figure 2: Detailed interactions between the thioesterase domain and Orlistat chemical moieties.
Figure 3: Metabolized Orlistat interactions and chain-length selectivity.
Figure 4: Molecular basis for Orlistat-mediated inhibition and substrate selectivity.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Kuhajda, F.P. Fatty acid synthase and cancer: new application of an old pathway. Cancer Res. 66, 5977–5980 (2006).

    Article  CAS  Google Scholar 

  2. Kuhajda, F.P. et al. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc. Natl. Acad. Sci. USA 97, 3450–3454 (2000).

    Article  CAS  Google Scholar 

  3. Pizer, E.S. et al. Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Res. 56, 1189–1193 (1996).

    CAS  PubMed  Google Scholar 

  4. Pizer, E.S. et al. Increased fatty acid synthase as a therapeutic target in androgen-independent prostate cancer progression. Prostate 47, 102–110 (2001).

    Article  CAS  Google Scholar 

  5. Alli, P.M., Pinn, M.L., Jaffee, E.M., McFadden, J.M. & Kuhajda, F.P. Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N transgenic mice. Oncogene 24, 39–46 (2005).

    Article  CAS  Google Scholar 

  6. De Schrijver, E., Brusselmans, K., Heyns, W., Verhoeven, G. & Swinnen, J.V. RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells. Cancer Res. 63, 3799–3804 (2003).

    CAS  PubMed  Google Scholar 

  7. Kridel, S.J., Axelrod, F., Rozenkrantz, N. & Smith, J.W. Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res. 64, 2070–2075 (2004).

    Article  CAS  Google Scholar 

  8. Browne, C.D., Hindmarsh, E.J. & Smith, J.W. Inhibition of endothelial cell proliferation and angiogenesis by orlistat, a fatty acid synthase inhibitor. FASEB J. 20, 2027–2035 (2006).

    Article  CAS  Google Scholar 

  9. Little, J.L., Wheeler, F.B., Fels, D., Koumenis, C. & Kridel, S.J. Fatty acid synthase inhibitors induce endoplasmic reticulum stress in tumor cells. Cancer Res. 67, 1262–1269 (2007).

    Article  CAS  Google Scholar 

  10. Chirala, S.S. & Wakil, S.J. Structure and function of animal fatty acid synthase. Lipids 39, 1045–1053 (2004).

    Article  CAS  Google Scholar 

  11. Smith, S., Witkowski, A. & Joshi, A.K. Structural and functional organization of the animal fatty acid synthase. Prog. Lipid Res. 42, 289–317 (2003).

    Article  CAS  Google Scholar 

  12. Pazirandeh, M., Chirala, S.S., Huang, W.Y. & Wakil, S.J. Characterization of recombinant thioesterase and acyl carrier protein domains of chicken fatty acid synthase expressed in Escherichia coli. J. Biol. Chem. 264, 18195–18201 (1989).

    CAS  PubMed  Google Scholar 

  13. Lin, C.Y. & Smith, S. Properties of the thioesterase component obtained by limited trypsinization of the fatty acid synthetase multienzyme complex. J. Biol. Chem. 253, 1954–1962 (1978).

    CAS  PubMed  Google Scholar 

  14. Joshi, A.K., Witkowski, A., Berman, H.A., Zhang, L. & Smith, S. Effect of modification of the length and flexibility of the acyl carrier protein-thioesterase interdomain linker on functionality of the animal fatty acid synthase. Biochemistry 44, 4100–4107 (2005).

    Article  CAS  Google Scholar 

  15. Singh, N., Wakil, S.J. & Stoops, J.K. On the question of half- or full-site reactivity of animal fatty acid synthetase. J. Biol. Chem. 259, 3605–3611 (1984).

    CAS  PubMed  Google Scholar 

  16. Asturias, F.J. et al. Structure and molecular organization of mammalian fatty acid synthase. Nat. Struct. Mol. Biol. 12, 225–232 (2005).

    Article  CAS  Google Scholar 

  17. Brink, J. et al. Experimental verification of conformational variation of human fatty acid synthase as predicted by normal mode analysis. Structure 12, 185–191 (2004).

    Article  CAS  Google Scholar 

  18. Maier, T., Jenni, S. & Ban, N. Architecture of mammalian fatty acid synthase at 4.5 Å resolution. Science 311, 1258–1262 (2006).

    Article  CAS  Google Scholar 

  19. Chakravarty, B., Gu, Z., Chirala, S.S., Wakil, S.J. & Quiocho, F.A. Human fatty acid synthase: structure and substrate selectivity of the thioesterase domain. Proc. Natl. Acad. Sci. USA 101, 15567–15572 (2004).

    Article  CAS  Google Scholar 

  20. Hadvary, P., Sidler, W., Meister, W., Vetter, W. & Wolfer, H. The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase. J. Biol. Chem. 266, 2021–2027 (1991).

    CAS  PubMed  Google Scholar 

  21. Luthi-Peng, Q., Marki, H.P. & Hadvary, P. Identification of the active-site serine in human pancreatic lipase by chemical modification with tetrahydrolipstatin. FEBS Lett. 299, 111–115 (1992).

    Article  CAS  Google Scholar 

  22. Ma, G. et al. Total synthesis and comparative analysis of orlistat, valilactone, and a transposed orlistat derivative: inhibitors of fatty acid synthase. Org. Lett. 8, 4497–4500 (2006).

    Article  CAS  Google Scholar 

  23. Purohit, V.C., Richardson, R.D., Smith, J.W. & Romo, D. Practical, catalytic, asymmetric synthesis of beta-lactones via a sequential ketene dimerization/hydrogenation process: inhibitors of the thioesterase domain of fatty acid synthase. J. Org. Chem. 71, 4549–4558 (2006).

    Article  CAS  Google Scholar 

  24. Nardini, M. & Dijkstra, B.W. Alpha/beta hydrolase fold enzymes: the family keeps growing. Curr. Opin. Struct. Biol. 9, 732–737 (1999).

    Article  CAS  Google Scholar 

  25. Kraut, J. Serine proteases: structure and mechanism of catalysis. Annu. Rev. Biochem. 46, 331–358 (1977).

    Article  CAS  Google Scholar 

  26. Pflugrath, J.W. The finer things in X-ray diffraction data collection. Acta Crystallogr. D Biol. Crystallogr. 55, 1718–1725 (1999).

    Article  CAS  Google Scholar 

  27. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  28. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  29. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  30. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  31. Kleywegt, G.J. Crystallographic refinement of ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 63, 94–100 (2007).

    Article  CAS  Google Scholar 

  32. Schuttelkopf, A.W. & van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004).

    Article  Google Scholar 

  33. Davis, I.W., Murray, L.W., Richardson, J.S. & Richardson, D.C. MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 32, 615–619 (2004).

    Article  Google Scholar 

  34. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  35. Binkowski, T.A., Naghibzadeh, S. & Liang, J. CASTp: computed atlas of surface topography of proteins. Nucleic Acids Res. 31, 3352–3355 (2003).

    Article  CAS  Google Scholar 

  36. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, USA, 2002).

    Google Scholar 

Download references

Acknowledgements

This work was supported by developmental funds from Wake Forest University School of Medicine, the Kulynych Interdisciplinary Cancer Research Fund, the US Department of Defense Prostrate Cancer Research Program (W81XWH-05-1-0065) and the US National Institutes of Health, National Cancer Institute (R01 CA114104) to S.J.K and W.T.L. The authors' views and opinions do not reflect those of the US Army or the Department of Defense. The authors thank T. Hollis and D.A. Lehtinen for assistance in collecting diffraction data on beamline x12c at the National Synchrotron Light Source, Brookhaven National Laboratory. The National Synchrotron Light Source is supported by funds from the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-98CH10886. We also thank J.D. Schmitt for insightful discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.W.P., S.J.K. and W.T.L. designed the experiments and interpreted the structure; S.J.K. generated the expression clone; C.W.P. and L.C.J. performed all protein expression, purification and crystallization; C.W.P. and W.T.L. contributed to structure solution and refinement; all authors contributed to manuscript preparation.

Corresponding author

Correspondence to W Todd Lowther.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 673 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pemble, C., Johnson, L., Kridel, S. et al. Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by Orlistat. Nat Struct Mol Biol 14, 704–709 (2007). https://doi.org/10.1038/nsmb1265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1265

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing