Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tumor suppressor p53 restricts Ras stimulation of RhoA and cancer cell motility

Abstract

Many features of the cancer cell phenotype emerge as a result of cooperation between multiple oncogenic mutations. Here we show that activated RasV12 and loss of p53 function can cooperate to promote cell motility, a feature closely associated with cancer progression to malignancy. Our analysis indicates that RasV12 and loss of p53 synergistically induce RhoA activity, revealing a previously unknown role for p53 in tumor suppression. p53 prevents activation of RhoA and thus induction of cell motility by RasV12 through a simple signaling circuit, which integrates multiple inputs that converge on RhoA. Our data suggest that p53 suppresses cancer progression to malignancy by modulating the quality of Ras signaling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activated Ras and mutant p53 cooperatively induce cell motility in mouse colon cells.
Figure 2: Cooperative activation of RhoA by Ras and mutant p53.
Figure 3: Oncogene-dependent RhoA activation contributes to increased cell motility in mp53/Ras cells.
Figure 4: Ras positively and negatively regulates RhoA activation by increasing RhoA membrane localization and stimulating p190 RhoGAP activity, respectively.
Figure 5: Negative regulation of RhoA by activated Ras mediated by p190 RhoGAP.
Figure 6: Loss of p53 function induces reduction of p190 RhoGAP tyrosine phosphorylation and accumulation of RhoA-GTP as well as motility in cancer cells expressing activated Ras.
Figure 7: Tumor suppressor p53 inhibits activation of RhoA and cell motility by RasV12 via 'AND' logic circuit.

Similar content being viewed by others

References

  1. Land, H., Parada, L.F. & Weinberg, R.A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Ruley, H.E. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304, 602–606 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Hahn, W.C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  5. Ridley, A.J., Paterson, H.F., Noble, M. & Land, H. Ras-mediated cell cycle arrest is altered by nuclear oncogenes to induce Schwann cell transformation. EMBO J. 7, 1635–1645 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hirakawa, T. & Ruley, H.E. Rescue of cells from ras oncogene-induced growth arrest by a second, complementing, oncogene. Proc. Natl. Acad. Sci. USA 85, 1519–1523 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lloyd, A.C. et al. Cooperating oncogenes converge to regulate cyclin/cdk complexes. Genes Dev. 11, 663–677 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. & Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16(ink4a). Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Sewing, A., Wiseman, B., Lloyd, A.C. & Land, H. High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol. Cell. Biol. 17, 5588–5597 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Woods, D. et al. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol. Cell. Biol. 17, 5598–5611 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perez-Roger, I., Kim, S.H., Griffiths, B., Sewing, A. & Land, H. Cyclins D1 and D2 mediate myc-induced proliferation via sequestration of p27(Kip1) and p21(Cip1). EMBO J. 18, 5310–5320 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu, J., Woods, D., McMahon, M. & Bishop, J.M. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12, 2997–3007 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Palmero, I., Pantoja, C. & Serrano, M. p19ARF links the tumour suppressor p53 to Ras. Nature 395, 125–126 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Campbell, P.M. & Der, C.J. Oncogenic Ras and its role in tumor cell invasion and metastasis. Semin. Cancer Biol. 14, 105–114 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Fearon, E.R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Hruban, R.H., Goggins, M., Parsons, J. & Kern, S.E. Progression model for pancreatic cancer. Clin. Cancer Res. 6, 2969–2972 (2000).

    CAS  PubMed  Google Scholar 

  18. Wistuba, I.I., Gazdar, A.F. & Minna, J.D. Molecular genetics of small cell lung carcinoma. Semin. Oncol. 28, 3–13 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Jackson, E.L. et al. The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res. 65, 10280–10288 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Lewis, B.C. et al. The absence of p53 promotes metastasis in a novel somatic mouse model for hepatocellular carcinoma. Mol. Cell. Biol. 25, 1228–1237 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burridge, K. & Wennerberg, K. Rho and Rac take center stage. Cell 116, 167–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Ridley, A.J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Sahai, E. & Marshall, C.J. RHO-GTPases and cancer. Nat. Rev. Cancer 2, 133–142 (2002).

    Article  PubMed  Google Scholar 

  24. Ridley, A.J., Paterson, H.F., Johnston, C.L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Nobes, C.D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Worthylake, R.A., Lemoine, S., Watson, J.M. & Burridge, K. RhoA is required for monocyte tail retraction during transendothelial migration. J. Cell Biol. 154, 147–160 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ridley, A.J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Sander, E.E., ten Klooster, J.P., van Delft, S., van der Kammen, R.A. & Collard, J.G. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol. 147, 1009–1022 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nimnual, A.S., Taylor, L.J. & Bar-Sagi, D. Redox-dependent downregulation of Rho by Rac. Nat. Cell Biol. 5, 236–241 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Wildenberg, G.A. et al. p120-Catenin and p190 RhoGAP regulate cell-Cell adhesion by coordinating antagonism between Rac and Rho. Cell 127, 1027–1039 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Zondag, G.C. et al. Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J. Cell Biol. 149, 775–782 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sahai, E., Olson, M.F. & Marshall, C.J. Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J. 20, 755–766 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Takaishi, K. et al. Involvement of Rho p21 small GTP-binding protein and its regulator in the HGF-induced cell motility. Oncogene 9, 273–279 (1994).

    CAS  PubMed  Google Scholar 

  34. Yoshioka, K., Matsumura, F., Akedo, H. & Itoh, K. Small GTP-binding protein Rho stimulates the actomyosin system, leading to invasion of tumor cells. J. Biol. Chem. 273, 5146–5154 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Vial, E., Sahai, E. & Marshall, C.J. ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell 4, 67–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Guo, F. & Zheng, Y. Involvement of Rho family GTPases in p19Arf- and p53-mediated proliferation of primary mouse embryonic fibroblasts. Mol. Cell. Biol. 24, 1426–1438 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gadea, G., Lapasset, L., Gauthier-Rouviere, C. & Roux, P. Regulation of Cdc42-mediated morphological effects: a novel function for p53. EMBO J. 21, 2373–2382 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. D'Abaco, G.M., Whitehead, R.H. & Burgess, A.W. Synergy between Apc min and an activated ras mutation is sufficient to induce colon carcinomas. Mol. Cell. Biol. 16, 884–891 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Whitehead, R.H., VanEeden, P.E., Noble, M.D., Ataliotis, P. & Jat, P.S. Establishment of conditionally immortalized epithelial cell lines from both colon and small intestine of adult H-2Kb-tsA58 transgenic mice. Proc. Natl. Acad. Sci. USA 90, 587–591 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Albini, A. et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 47, 3239–3245 (1987).

    CAS  PubMed  Google Scholar 

  41. Bae, S.N. et al. Molecular and cellular analysis of basement membrane invasion by human breast cancer cells in Matrigel-based in vitro assays. Breast Cancer Res. Treat. 24, 241–255 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Ren, X.D., Kiosses, W.B. & Schwartz, M.A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 18, 578–585 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sander, E.E. et al. Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J. Cell Biol. 143, 1385–1398 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Coleman, M.L. et al. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat. Cell Biol. 3, 339–345 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Feig, L.A. Tools of the trade: use of dominant-inhibitory mutants of Ras-family GTPases. Nat. Cell Biol. 1, E25–E27 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Michaelson, D. et al. Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J. Cell Biol. 152, 111–126 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Noren, N.K., Arthur, W.T. & Burridge, K. Cadherin engagement inhibits RhoA via p190 RhoGAP. J. Biol. Chem. 278, 13615–13618 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Brouns, M.R., Matheson, S.F. & Settleman, J. p190 RhoGAP is the principal Src substrate in brain and regulates axon outgrowth, guidance and fasciculation. Nat. Cell Biol. 3, 361–367 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Roof, R.W. et al. Phosphotyrosine (p-Tyr)-dependent and -independent mechanisms of p190 RhoGAP-p120 RasGAP interaction: Tyr 1105 of p190, a substrate for c-Src, is the sole p-Tyr mediator of complex formation. Mol. Cell. Biol. 18, 7052–7063 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hu, K.Q. & Settleman, J. Tandem SH2 binding sites mediate the RasGAP-RhoGAP interaction: a conformational mechanism for SH3 domain regulation. EMBO J. 16, 473–483 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Olive, K.P. et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119, 847–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Lang, G.A. et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119, 861–872 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Schroy, P.C., III et al. Detection of p21ras mutations in colorectal adenomas and carcinomas by enzyme-linked immunosorbent assay. Cancer 76, 201–209 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Burri, N. et al. Methylation silencing and mutations of the p14ARF and p16INK4a genes in colon cancer. Lab. Invest. 81, 217–229 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Hernandez, S.E., Settleman, J. & Koleske, A.J. Adhesion-dependent regulation of p190 RhoGAP in the developing brain by the Abl-related gene tyrosine kinase. Curr. Biol. 14, 691–696 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Chiarugi, P. et al. The low M(r) protein-tyrosine phosphatase is involved in Rho-mediated cytoskeleton rearrangement after integrin and platelet-derived growth factor stimulation. J. Biol. Chem. 275, 4640–4646 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Ramaswamy, S., Ross, K.N., Lander, E.S. & Golub, T.R. A molecular signaure of metastasis in primary solid tumors. Nat. Genet. 33, 49–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. van't Veer, L.J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  Google Scholar 

  61. Morgenstern, J.P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brummelkamp, T.R., Bernards, R. & Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243–247 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Nobes, C.D. & Hall, A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol. 144, 1235–1244 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nakazawa, T. et al. p250GAP, a novel brain-enriched GTPase-activating protein for Rho family GTPases, is involved in the N-methyl-d-aspartate receptor signaling. Mol. Biol. Cell 14, 2921–2934 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Newman for expert assistance, D. Bohmann, H. McMurray, M. Noble, Y. Sun and J. Zhao for helpful discussions and L. Deleu for valuable help in the initial phase of the project. We also thank G. Evan (University of California, San Francisco) for providing anti–c-Myc (9E10), J. Collard (Netherlands Cancer Institute) for providing pGEX3X-GST-C21 and pGEX2TK-GST-PAKCD, A.J. Ridley (Ludwig Institute, London) for providing the RhoN19-Myc DNA fragment, J. Settleman (Massachusetts General Hospital Cancer Center) for providing HA-tagged p190 RhoGAP expression constructs, E. Sahai (Cancer Research UK) for providing pGEX-KG Tat-C3, R. Whitehead and A.W. Burgess (Ludwig Institute, Melbourne) for providing YAMC cells, B. Vogelstein (Johns Hopkins University) for providing p53-deficient HCT116 cells and G. Nolan (Stanford University) for providing Phoenix cells. This work was supported by the James P. Wilmot Foundation and by US National Institutes of Health grants CA90663 and GM075299.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Land.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

p190 RhoGAP knockdown does not alter subcellular distribution of RhoA protein in the presence of RasV12 (PDF 562 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, M., Land, H. Tumor suppressor p53 restricts Ras stimulation of RhoA and cancer cell motility. Nat Struct Mol Biol 14, 215–223 (2007). https://doi.org/10.1038/nsmb1208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing