Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Hsp70 chaperones use ATP to remodel native protein oligomers and stable aggregates by entropic pulling

Forceful unfolding by entropic pulling is the general mechanism by which Hsp70 and Hsp110 chaperones control the oligomeric states, structures and activities of cellular proteins.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The free energy originating from the steric clashes between the obstacle and Hsp70, ΔGEP, decreases with the number of amino acids between the obstacle (here a membrane pore) and the Hsp70-binding site (blue line with solid circles).
Figure 2: Members of the Hsp70 chaperone family use ATP hydrolysis to recruit a universal entropic pulling mechanism to unfold and translocate nascent polypeptides, disaggregate misfolded proteins and disentangle native protein oligomers in the cell.

References

  1. Finka, A., Sharma, S.K. & Goloubinoff, P. Front. Mol. Biosci. 2, 29 (2015).

    Article  Google Scholar 

  2. Sousa, R. et al. Nat. Struct. Mol. Biol. 23, 821–829 (2016).

    Article  CAS  Google Scholar 

  3. Matouschek, A. et al. EMBO J. 16, 6727–6736 (1997).

    Article  CAS  Google Scholar 

  4. Schneider, H.C. et al. Nature 371, 768–774 (1994).

    Article  CAS  Google Scholar 

  5. Okamoto, K. et al. EMBO J. 21, 3659–3671 (2002).

    Article  CAS  Google Scholar 

  6. De Los Rios, P., Ben-Zvi, A., Slutsky, O., Azem, A. & Goloubinoff, P. Proc. Natl. Acad. Sci. USA 103, 6166–6171 (2006).

    Article  CAS  Google Scholar 

  7. Liu, B., Han, Y. & Qian, S.B. Mol. Cell 49, 453–463 (2013).

    Article  CAS  Google Scholar 

  8. Goldman, D.H. et al. Science 348, 457–460 (2015).

    Article  CAS  Google Scholar 

  9. Finka, A., Mattoo, R.U. & Goloubinoff, P. Annu. Rev. Biochem. 85, 715–742 (2016).

    Article  CAS  Google Scholar 

  10. Xing, Y. et al. EMBO J. 29, 655–665 (2010).

    Article  CAS  Google Scholar 

  11. Finka, A., Sood, V., Quadroni, M., Rios, P. & Goloubinoff, P. Cell Stress Chaperones 20, 605–620 (2015).

    Article  CAS  Google Scholar 

  12. Matlack, K.E., Misselwitz, B., Plath, K. & Rapoport, T.A. Cell 97, 553–564 (1999).

    Article  CAS  Google Scholar 

  13. Takenaka, I.M., Leung, S.M., McAndrew, S.J., Brown, J.P. & Hightower, L.E. J. Biol. Chem. 270, 19839–19844 (1995).

    Article  CAS  Google Scholar 

  14. Mayer, M.P. et al. Nat. Struct. Biol. 7, 586–593 (2000).

    Article  CAS  Google Scholar 

  15. De Los Rios, P. & Barducci, A. eLife 3, e02218 (2014).

    Article  Google Scholar 

  16. Misselwitz, B., Staeck, O., Matlack, K.E. & Rapoport, T.A. J. Biol. Chem. 274, 20110–20115 (1999).

    Article  CAS  Google Scholar 

  17. Hagai, T. & Levy, Y. Proc. Natl. Acad. Sci. USA 107, 2001–2006 (2010).

    Article  CAS  Google Scholar 

  18. Goloubinoff, P. Swiss Med. Wkly. 146, w14306 (2016).

    PubMed  Google Scholar 

  19. Labbadia, J. & Morimoto, R.I. Annu. Rev. Biochem. 84, 435–464 (2015).

    Article  CAS  Google Scholar 

  20. Mattoo, R.U., Sharma, S.K., Priya, S., Finka, A. & Goloubinoff, P. J. Biol. Chem. 288, 21399–21411 (2013).

    Article  CAS  Google Scholar 

  21. Nillegoda, N.B. et al. Nature 524, 247–251 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Goloubinoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Los Rios, P., Goloubinoff, P. Hsp70 chaperones use ATP to remodel native protein oligomers and stable aggregates by entropic pulling. Nat Struct Mol Biol 23, 766–769 (2016). https://doi.org/10.1038/nsmb.3283

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3283

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing