Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

mRNA–mRNA duplexes that autoelicit Staufen1-mediated mRNA decay

Subjects

A Corrigendum to this article was published on 03 December 2014

This article has been updated

Abstract

We report a new mechanism by which human mRNAs cross-talk: an Alu element in the 3′ untranslated region (3′ UTR) of one mRNA can base-pair with a partially complementary Alu element in the 3′ UTR of a different mRNA, thereby creating a Staufen1 (STAU1)-binding site (SBS). STAU1 binding to a 3′-UTR SBS was previously shown to trigger STAU1-mediated mRNA decay (SMD) by directly recruiting the ATP-dependent RNA helicase UPF1, which is also a key factor in the mechanistically related nonsense-mediated mRNA decay (NMD) pathway. In the case of a 3′-UTR SBS created by mRNA-mRNA base-pairing, we show that SMD targets both mRNAs in the duplex, provided that both mRNAs are translated. If only one mRNA is translated, then it alone is targeted for SMD. We demonstrate the functional importance of mRNA–mRNA–triggered SMD in cell migration and invasion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SOWAHC mRNA reduces the abundance of mRNAs to which it is predicted to base-pair through partially complementary 3′-UTR Alu elements.
Figure 2: mRNA–mRNA duplexes create SBSs and trigger SMD.
Figure 3: mRNA–mRNA duplexes create SBSs and trigger SMD.
Figure 4: An mRNA that duplexes with another mRNA by 3′-UTR base-pairing is targeted for SMD, provided that it is translationally active.
Figure 5: Evidence that the SMD of mRNA–mRNA duplexes contributes to pancreatic adenocarcinoma cell migration and invasion.

Similar content being viewed by others

Change history

  • 04 December 2013

    In the version of this article initially published, the last sentence of the Figure 5 legend reads: "Downregulation of SOWAHC mRNA inhibits SOWAHC mRNA-CDCP1 mRNA base-pairing and thus the SOWAHC mRNA-mediated SMD of CDCP1 mRNA, an mRNA that encodes a protein that inhibits cell migration and invasion." However, "a protein that inhibits" should have read "a protein that promotes." The error has been corrected in the HTML and PDF versions of the article.

References

  1. Gong, C., Kim, Y.K., Woeller, C.F., Tang, Y. & Maquat, L.E. SMD and NMD are competitive pathways that contribute to myogenesis: effects on PAX3 and myogenin mRNAs. Genes Dev. 23, 54–66 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gong, C. & Maquat, L.E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470, 284–288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cho, H. et al. Staufen1-mediated mRNA decay functions in adipogenesis. Mol. Cell 46, 495–506 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Park, E. & Maquat, L.E. Staufen-mediated mRNA decay. Wiley Interdiscip. Rev. RNA 4, 423–435 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim, Y.K. et al. Staufen1 regulates diverse classes of mammalian transcripts. EMBO J. 26, 2670–2681 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eferl, R. & Wagner, E.F. AP-1: a double-edged sword in tumorigenesis. Nat. Rev. Cancer 3, 859–868 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Shaulian, E. & Karin, M. AP-1 as a regulator of cell life and death. Nat. Cell Biol. 4, E131–E136 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Kim, Y.K., Furic, L., DesGroseillers, L. & Maquat, L.E. Mammalian Staufen1 recruits Upf1 to specific mRNA 3′ UTRs so as to elicit mRNA decay. Cell 120, 195–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Miyazawa, Y. et al. CUB domain-containing protein 1, a prognostic factor for human pancreatic cancers, promotes cell migration and extracellular matrix degradation. Cancer Res. 70, 5136–5146 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Schmitz, J. SINEs as driving forces in genome evolution. Genome Dyn. 7, 92–107 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, J., Gong, C. & Maquat, L.E. Control of myogenesis by rodent SINE-containing lncRNAs. Genes Dev. 27, 793–804 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maquat, L.E., Tarn, W.Y. & Isken, O. The pioneer round of translation: features and functions. Cell 142, 368–374 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park, E., Gleghorn, M.L. & Maquat, L.E. Staufen2 functions in Staufen1-mediated mRNA decay by binding to itself and its paralog and promoting UPF1 helicase but not ATPase activity. Proc. Natl. Acad. Sci. USA 110, 405–412 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Chamieh, H., Ballut, L., Bonneau, F. & Le Hir, H. NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity. Nat. Struct. Mol. Biol. 15, 85–93 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Melero, R. et al. The cryo-EM structure of the UPF–EJC complex shows UPF1 poised toward the RNA 3′ end. Nat. Struct. Mol. Biol. 19, 498–505 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Gehring, N.H. et al. Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Mol. Cell 20, 65–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Kunz, J.B., Neu-Yilik, G., Hentze, M.W., Kulozik, A.E. & Gehring, N.H. Functions of hUpf3a and hUpf3b in nonsense-mediated mRNA decay and translation. RNA 12, 1015–1022 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gleghorn, M.L., Gong, C., Kielkopf, C.L. & Maquat, L.E. Staufen1 dimerizes through a conserved motif and a degenerate dsRNA-binding domain to promote mRNA decay. Nat. Struct. Mol. Biol. 20, 515–524 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martel, C. et al. Multimerization of Staufen1 in live cells. RNA 16, 585–597 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reuter, J.S. & Mathews, D.H. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11, 129 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gong, C., Popp, M.W. & Maquat, L.E. Biochemical analysis of long non-coding RNA-containing ribonucleoprotein complexes. Methods 58, 88–93 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang, L. & Wilkinson, M.F. Regulation of nonsense-mediated mRNA decay. Wiley Interdiscip. Rev. RNA 3, 807–828 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Lipson, S.E. & Hearst, J.E. Psoralen cross-linking of ribosomal RNA. Methods Enzymol. 164, 330–341 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Gong, C. & Maquat, L.E. “Alu”strious long ncRNAs and their role in shortening mRNA half-lives. Cell Cycle 10, 1882–1883 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ingolia, N.T., Lareau, L.F. & Weissman, J.S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sato, H. & Maquat, L.E. Remodeling of the pioneer translation initiation complex involves translation and the karyopherin importin β. Genes Dev. 23, 2537–2550 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karreth, F.A. et al. In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147, 382–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rubio-Somoza, I., Weigel, D., Franco-Zorilla, J.M., García, J.A. & Paz-Ares, J. ceRNAs: miRNA target mimic mimics. Cell 147, 1431–1432 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Sumazin, P. et al. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147, 370–381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tay, Y. et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147, 344–357 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Di Giammartino, D.C., Nishida, K. & Manley, J.L. Mechanisms and consequences of alternative polyadenylation. Mol. Cell 43, 853–866 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Elbarbary, R.A., Li, W., Tian, B. & Maquat, L.E. STAU1 binding to 3′ UTR IRAlus complements nuclear retention to protect cells from PKR-mediated translational shutdown. Genes Dev. 27, 1495–1510 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marión, R.M., Fortes, P., Beloso, A., Dotti, C. & Ortín, J. A human sequence homologue of Staufen is an RNA-binding protein that is associated with polysomes and localizes to the rough endoplasmic reticulum. Mol. Cell. Biol. 19, 2212–2219 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Mathews for computational advice, K. Nehrke for access to his inverted fluorescence microscope, S. de Lucas and J. Ortín (Centro Nacional de Biotecnología, Madrid, Spain) for anti-STAU1 antibody, C. Beckham for help with the trans-well assay and M.W.-L. Popp for comments on the manuscript. This work was supported by the US National Institutes of Health (GM074593 to L.E.M.) and a University of Rochester Messersmith Graduate Student Fellowship (C.G.).

Author information

Authors and Affiliations

Authors

Contributions

C.G. wrote the Perl programs and undertook the bioinformatics analyses and performed, with assistance from Y.T., wet-bench experiments. C.G. and L.E.M. designed the experiments, analyzed experimental data and wrote the manuscript.

Corresponding author

Correspondence to Lynne E Maquat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 2693 kb)

Supplementary Table 1

G of predicted duplexes formed between the 3′UTR Alu element of each specified ensembl transcript and the 3′UTR Alu element of each of three proven SMD targets (XLS 375 kb)

Supplementary Table 3

Length of 3′UTR and siRNA annealing site(s) for each analyzed mRNA (XLS 22 kb)

Supplementary Table 3

Primers used in RT-sqPCR or RT-qPCR (XLS 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, C., Tang, Y. & Maquat, L. mRNA–mRNA duplexes that autoelicit Staufen1-mediated mRNA decay. Nat Struct Mol Biol 20, 1214–1220 (2013). https://doi.org/10.1038/nsmb.2664

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2664

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing