Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Determinants of nucleosome positioning

Subjects

Abstract

Nucleosome positioning is critical for gene expression and most DNA-related processes. Here we review the dominant patterns of nucleosome positioning that have been observed and summarize the current understanding of their underlying determinants. The genome-wide pattern of nucleosome positioning is determined by the combination of DNA sequence, ATP-dependent nucleosome remodeling enzymes and transcription factors that include activators, components of the preinitiation complex and elongating RNA polymerase II. These determinants influence each other such that the resulting nucleosome positioning patterns are likely to differ among genes and among cells in a population, with consequent effects on gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the concepts of nucleosome positioning and nucleosome occupancy.
Figure 2: Nucleosome sequence preferences.
Figure 3: Determinants of nucleosome positioning.

Similar content being viewed by others

References

  1. Richmond, T.J. & Davey, C.A. The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Yuan, G.-C. et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39, 1235–1244 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Mavrich, T.N. et al. A barrier nucleosome model for statistical positioning of nucleosome throughout the yeast genome. Genome Res. 18, 1073–1083 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mavrich, T.N. et al. Nucleosome organization in the Drosophila genome. Nature 453, 358–362 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schones, D.E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Shivaswamy, S. et al. Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol. 6, e65 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Valouev, A. et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res. 18, 1051–1063 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Valouev, A. et al. Determinants of nucleosome organization in primary human cells. Nature 474, 516–520 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Freidkin, I. & Katcoff, D.J. Specific distribution of the Saccharomyces cerevisiae linker histone HHO1 in the chromatin. Nucleic Acids Res. 29, 4043–4051 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lam, F.H., Steger, D.J. & O'Shea, E.K. Chromatin decouples promoter threshold from dynamic range. Nature 453, 246–250 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Raveh-Sadka, T. et al. Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast. Nat. Genet. 44, 743–750 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Varshavsky, A.J., Sundin, O. & Bohn, M. A stretch of “late” SV40 viral DNA about 400 bp long which induces the origin of replication is specifically exposed in SV40 minichromosomes. Cell 16, 453–466 (1979).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, C. The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286, 854–860 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. Iyer, V. & Struhl, K. Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic structure. EMBO J. 14, 2570–2579 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, X., Lee, C.K., Granek, J.A., Clarke, N.D. & Lieb, J.D. Whole-genome comparison of Leu3 binding in vitro and in vivo reveals the importance of nucleosome occupancy in target site selection. Genome Res. 16, 1517–1528 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zaret, K.S. & Carroll, J.S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Workman, J.L. & Kingston, R.E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545–579 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Thastrom, A. et al. Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. J. Mol. Biol. 288, 213–229 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Drew, H.R. & Travers, A.A. DNA bending and its relation to nucleosome positioning. J. Mol. Biol. 186, 773–790 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Satchwell, S.C., Drew, H.R. & Travers, A.A. Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol. 191, 659–675 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brogaard, K.R., Xi, L., Wang, J.P. & Widom, J. A map of nucleosome positions in yeast at base-pair resolution. Nature 486, 496–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nelson, H.C.M., Finch, J.T., Luisi, B.F. & Klug, A. The structure of an oligo(dA)·oligo(dT) tract and its biological implications. Nature 330, 221–226 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Suter, B., Schnappauf, G. & Thoma, F. Poly(dA-dT) sequences exist as rigid DNA structures in nucleosome-free yeast promoters in vivo. Nucleic Acids Res. 28, 4083–4089 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Segal, E. & Widom, J. Poly(dA:dT) tracts: major determinants of nucleosome organization. Curr. Opin. Struct. Biol. 19, 65–71 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McCall, M., Brown, T. & Kennard, O. The crystal structure of d(G-G-G-G-C-C-C-C): a model for poly(dG)·poly(dC). J. Mol. Biol. 183, 385–396 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. Dechering, K.J., Cuelenaere, K., Konings, R.N. & Leunissen, J.A. Distinct frequency-distributions of homopolymeric DNA tracts in different genomes. Nucleic Acids Res. 26, 4056–4062 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Struhl, K. Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc. Natl. Acad. Sci. USA 82, 8419–8423 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Field, Y. et al. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput. Biol. 4, e1000216 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gaffney, D.J. et al. Controls of nucleosome positioning in the human genome. PLoS Genet. 8, e1003036 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, Y. et al. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat. Struct. Mol. Biol. 16, 847–852 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sekinger, E.A., Moqtaderi, Z. & Struhl, K. Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol. Cell 18, 735–748 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Hughes, A., Jin, Y., Rando, O.J. & Struhl, K. A functional evolutionary approach to identify determinants of nucleosome positioning: a unifying model for establishing the genome-wide pattern. Mol. Cell 48, 5–15 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, W., Tabor, S. & Struhl, K. Distinguishing between mechanisms of eukaryotic transcriptional activation with bacteriophage T7 RNA polymerase. Cell 50, 1047–1055 (1987).

    Article  CAS  PubMed  Google Scholar 

  37. Zhu, Z. & Thiele, D.J. A specialized nucleosome modulates transcription factor access to a C. glabrata metal responsive promoter. Cell 87, 459–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Zeevi, D. et al. Compensation for differences in gene copy number among yeast ribosomal proteins is encoded within their promoters. Genome Res. 21, 2114–2128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Field, Y. et al. Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization. Nat. Genet. 41, 438–445 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tirosh, I. & Barkai, N. Two strategies for gene regulation by promoter nucleosomes. Genome Res. 18, 1084–1091 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fan, X. et al. Nucleosome depletion in yeast terminator regions is not intrinsic and can occur by a transcriptional mechanism linked to 3′ end formation. Proc. Natl. Acad. Sci. USA 107, 17945–17950 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lantermann, A.B. et al. Schizosaccharomyces pombe gene-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat. Struct. Mol. Biol. 17, 251–257 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Tsankov, A.M., Thompson, D.A., Socha, A., Regev, A. & Rando, O.J. The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol. 8, e1000414 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Tsankov, A., Yanagisawa, Y., Rhind, N., Regev, A. & Rando, O.J. Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization. Genome Res. 21, 1851–1862 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, Z. et al. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332, 977–980 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wippo, C.J. et al. The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes. EMBO J. 30, 1277–1288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Badis, G. et al. A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol. Cell 32, 878–887 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Floer, M. et al. A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding. Cell 141, 407–418 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rippe, K. et al. DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes. Proc. Natl. Acad. Sci. USA 104, 15635–15640 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van Vugt, J.J. et al. Multiple aspects of ATP-dependent nucleosome translocation by RSC and Mi-2 are directed by the underlying DNA sequence. PLoS ONE 4, e6345 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Whitehouse, I. & Tsukiyama, T. Antagonistic forces that position nucleosomes in vivo. Nat. Struct. Mol. Biol. 13, 633–640 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Whitehouse, I., Rando, O.J., Delrow, J. & Tsukiyama, T. Chromatin remodelling at promoters suppresses antisense transcription. Nature 450, 1031–1035 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Hartley, P.D. & Madhani, H.D. Mechanisms that specify promoter nucleosome location and identity. Cell 137, 445–458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gkikopoulos, T. et al. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 333, 1758–1760 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hennig, B.P., Bendrin, K., Zhou, Y. & Fischer, T. Chd1 chromatin remodelers maintain nucleosome organization and repress cryptic transcription. EMBO Rep. 13, 997–1003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pointner, J. et al. CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe. EMBO J. 31, 4388–4403 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shim, Y.S. et al. Hrp3 controls nucleosome positioning to suppress non-coding transcription in eu- and heterochromatin. EMBO J. 31, 4375–4387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Celona, B. et al. Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output. PLoS Biol. 9, e1001086 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gossett, A.J. & Lieb, J.D. In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae. PLoS Genet. 8, e1002771 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ito, T., Bulger, M., Pazin, M.J., Kobayashi, R. & Kadonaga, J.T. ACF, an ISW1-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Drew, H.R. Reconstitution of short-spaced chromatin from the histone octamer and either HMG14,17 or histone H1. J. Mol. Biol. 230, 824–836 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Fan, Y. et al. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 123, 1199–1212 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Hashimoto, H. et al. Histone H1 null vertebrate cells exhibit altered nucleosome architecture. Nucleic Acids Res. 38, 3533–3545 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Oberg, C., Izzo, A., Schneider, R., Wrange, O. & Belikov, S. Linker histone subtypes differ in their effect on nucleosome spacing in vivo. J. Mol. Biol. 419, 183–197 (2012).

    Article  PubMed  CAS  Google Scholar 

  65. Rhee, H.S. & Pugh, B.F. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 483, 295–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Adelman, K. & Lis, J.T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet. 13, 720–731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chang, G.S. et al. Unusual combinatorial involvement of poly-A/T tracts in organizing genes and chromatin in Dictyostelium. Genome Res. 22, 1098–1106 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vaillant, C. et al. A novel strategy of transcription regulation by intragenic nucleosome ordering. Genome Res. 20, 59–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yen, K., Vinayachandran, V., Batta, K., Koerber, R.T. & Pugh, B.F. Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 149, 1461–1473 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This Review is dedicated to the memory of Jon Widom, our dear friend and colleague, who is sorely missed by the authors and the scientific community. We thank D. Schneider for encouraging us to write this Review, and Z. Moqtaderi, T. Raveh-Sadka, M. Levo, N. Kaplan and Y. Field for comments on the manuscript. This work was supported by grant GM 30186 from the US National Institutes of Health to K.S. and grants from the European Research Council and the US National Institutes of Health to E.S.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kevin Struhl or Eran Segal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Struhl, K., Segal, E. Determinants of nucleosome positioning. Nat Struct Mol Biol 20, 267–273 (2013). https://doi.org/10.1038/nsmb.2506

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2506

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing