Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nectin ectodomain structures reveal a canonical adhesive interface

Abstract

Nectins are immunoglobulin superfamily glycoproteins that mediate intercellular adhesion in many vertebrate tissues. Homophilic and heterophilic interactions between nectin family members help mediate tissue patterning. We determined the homophilic binding affinities and heterophilic specificities of all four nectins and the related protein nectin-like 5 (Necl-5) from human and mouse, revealing a range of homophilic interaction strengths and a defined heterophilic specificity pattern. To understand the molecular basis of their adhesion and specificity, we determined the crystal structures of natively glycosylated full ectodomains or adhesive fragments of all four nectins and Necl-5. All of the crystal structures revealed dimeric nectins bound through a stereotyped interface that was previously proposed to represent a cis dimer. However, conservation of this interface and the results of targeted cross-linking experiments showed that this dimer probably represents the adhesive trans interaction. The structure of the dimer provides a simple molecular explanation for the adhesive binding specificity of nectins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SPR analysis of nectin binding interactions.
Figure 2: Overall structures of nectin homodimers.
Figure 3: Structural details of nectin homophilic dimers.
Figure 4: Targeted cross-linking of the nectin homodimer interface in transfected A431D cells.
Figure 5: Analysis of the molecular basis of nectin binding specificity.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Ogita, H. & Takai, Y. Nectins and nectin-like molecules: roles in cell adhesion, polarization, movement, and proliferation. IUBMB Life 58, 334–343 (2006).

    Article  CAS  Google Scholar 

  2. Sakisaka, T. & Takai, Y. Biology and pathology of nectins and nectin-like molecules. Curr. Opin. Cell Biol. 16, 513–521 (2004).

    Article  CAS  Google Scholar 

  3. Takai, Y. & Nakanishi, H. Nectin and afadin: novel organizers of intercellular junctions. J. Cell Sci. 116, 17–27 (2003).

    Article  CAS  Google Scholar 

  4. Morita, H. et al. Nectin-2 and N-cadherin interact through extracellular domains and induce apical accumulation of F-actin in apical constriction of Xenopus neural tube morphogenesis. Development 137, 1315–1325 (2010).

    Article  CAS  Google Scholar 

  5. Ikeda, W. et al. Afadin: a key molecule essential for structural organization of cell-cell junctions of polarized epithelia during embryogenesis. J. Cell Biol. 146, 1117–1132 (1999).

    Article  CAS  Google Scholar 

  6. Biederer, T. Bioinformatic characterization of the SynCAM family of immunoglobulin-like domain-containing adhesion molecules. Genomics 87, 139–150 (2006).

    Article  CAS  Google Scholar 

  7. Ikeda, W. et al. Tage4/Nectin-like molecule-5 heterophilically trans-interacts with cell adhesion molecule Nectin-3 and enhances cell migration. J. Biol. Chem. 278, 28167–28172 (2003).

    Article  CAS  Google Scholar 

  8. Okabe, N. et al. Contacts between the commissural axons and the floor plate cells are mediated by nectins. Dev. Biol. 273, 244–256 (2004).

    Article  CAS  Google Scholar 

  9. Reymond, N. et al. DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J. Exp. Med. 199, 1331–1341 (2004).

    Article  CAS  Google Scholar 

  10. Togashi, H. et al. Nectins establish a checkerboard-like cellular pattern in the auditory epithelium. Science 333, 1144–1147 (2011).

    Article  CAS  Google Scholar 

  11. Takahashi, K. et al. Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein. J. Cell Biol. 145, 539–549 (1999).

    Article  CAS  Google Scholar 

  12. Satoh-Horikawa, K. et al. Nectin-3, a new member of immunoglobulin-like cell adhesion molecules that shows homophilic and heterophilic cell-cell adhesion activities. J. Biol. Chem. 275, 10291–10299 (2000).

    Article  CAS  Google Scholar 

  13. Meng, W. & Takeichi, M. Adherens junction: molecular architecture and regulation. Cold Spring Harb. Perspect. Biol. 1, a002899 (2009).

    Article  Google Scholar 

  14. Aoki, J. et al. Mouse homolog of poliovirus receptor-related gene 2 product, mPRR2, mediates homophilic cell aggregation. Exp. Cell Res. 235, 374–384 (1997).

    Article  CAS  Google Scholar 

  15. Lopez, M. et al. The human poliovirus receptor related 2 protein is a new hematopoietic/endothelial homophilic adhesion molecule. Blood 92, 4602–4611 (1998).

    CAS  PubMed  Google Scholar 

  16. Momose, Y. et al. Role of the second immunoglobulin-like loop of nectin in cell-cell adhesion. Biochem. Biophys. Res. Commun. 293, 45–49 (2002).

    Article  CAS  Google Scholar 

  17. Reymond, N. et al. Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction. J. Biol. Chem. 276, 43205–43215 (2001).

    Article  CAS  Google Scholar 

  18. Struyf, F., Martinez, W.M. & Spear, P.G. Mutations in the N-terminal domains of nectin-1 and nectin-2 reveal differences in requirements for entry of various alphaherpesviruses and for nectin-nectin interactions. J. Virol. 76, 12940–12950 (2002).

    Article  CAS  Google Scholar 

  19. Miyahara, M. et al. Interaction of nectin with afadin is necessary for its clustering at cell-cell contact sites but not for its cis dimerization or trans interaction. J. Biol. Chem. 275, 613–618 (2000).

    Article  CAS  Google Scholar 

  20. Narita, H. et al. Crystal structure of the cis-dimer of Nectin-1: implications for the architecture of cell-cell junctions. J. Biol. Chem. 286, 12659–12669 (2011).

    Article  CAS  Google Scholar 

  21. Fabre, S. et al. Prominent role of the Ig-like V domain in trans-interactions of nectins. Nectin3 and nectin 4 bind to the predicted C–C′-C″-D β-strands of the nectin1 V domain. J. Biol. Chem. 277, 27006–27013 (2002).

    Article  CAS  Google Scholar 

  22. Yasumi, M., Shimizu, K., Honda, T., Takeuchi, M. & Takai, Y. Role of each immunoglobulin-like loop of nectin for its cell-cell adhesion activity. Biochem. Biophys. Res. Commun. 302, 61–66 (2003).

    Article  CAS  Google Scholar 

  23. Martinez-Rico, C. et al. Separation force measurements reveal different types of modulation of E-cadherin–based adhesion by nectin-1 and -3. J. Biol. Chem. 280, 4753–4760 (2005).

    Article  CAS  Google Scholar 

  24. Mueller, S. & Wimmer, E. Recruitment of nectin-3 to cell-cell junctions through trans-heterophilic interaction with CD155, a vitronectin and poliovirus receptor that localizes to α(v)β3 integrin-containing membrane microdomains. J. Biol. Chem. 278, 31251–31260 (2003).

    Article  CAS  Google Scholar 

  25. Inagaki, M. et al. Role of cell adhesion molecule nectin-3 in spermatid development. Genes Cells 11, 1125–1132 (2006).

    Article  CAS  Google Scholar 

  26. Inagaki, M. et al. Roles of cell-adhesion molecules nectin 1 and nectin 3 in ciliary body development. Development 132, 1525–1537 (2005).

    Article  CAS  Google Scholar 

  27. Togashi, H. et al. Interneurite affinity is regulated by heterophilic nectin interactions in concert with the cadherin machinery. J. Cell Biol. 174, 141–151 (2006).

    Article  CAS  Google Scholar 

  28. Ozaki-Kuroda, K. et al. Nectin couples cell-cell adhesion and the actin scaffold at heterotypic testicular junctions. Curr. Biol. 12, 1145–1150 (2002).

    Article  CAS  Google Scholar 

  29. Brancati, F. et al. Mutations in PVRL4, encoding cell adhesion molecule nectin-4, cause ectodermal dysplasia-syndactyly syndrome. Am. J. Hum. Genet. 87, 265–273 (2010).

    Article  CAS  Google Scholar 

  30. Suzuki, K. et al. Mutations of PVRL1, encoding a cell-cell adhesion molecule/herpesvirus receptor, in cleft lip/palate-ectodermal dysplasia. Nat. Genet. 25, 427–430 (2000).

    Article  CAS  Google Scholar 

  31. Krummenacher, C., Baribaud, I., Sanzo, J.F., Cohen, G.H. & Eisenberg, R.J. Effects of herpes simplex virus on structure and function of nectin-1/HveC. J. Virol. 76, 2424–2433 (2002).

    Article  CAS  Google Scholar 

  32. Katsamba, P. et al. Linking molecular affinity and cellular specificity in cadherin-mediated adhesion. Proc. Natl. Acad. Sci. USA 106, 11594–11599 (2009).

    Article  CAS  Google Scholar 

  33. Mavaddat, N. et al. Signaling lymphocytic activation molecule (CDw150) is homophilic but self-associates with very low affinity. J. Biol. Chem. 275, 28100–28109 (2000).

    CAS  PubMed  Google Scholar 

  34. Zhang, N. et al. Binding of herpes simplex virus glycoprotein D to nectin-1 exploits host cell adhesion. Nat. Commun. 2, 577 (2011).

    Article  Google Scholar 

  35. Liu, J. et al. Crystal structure of cell adhesion molecule nectin-2/CD112 and its binding to immune ceceptor DNAM-1/CD226. J. Immunol. 188, 5511–5520 (2012).

    Article  CAS  Google Scholar 

  36. Zhang, P. et al. Crystal structure of CD155 and electron microscopic studies of its complexes with polioviruses. Proc. Natl. Acad. Sci. USA 105, 18284–18289 (2008).

    Article  CAS  Google Scholar 

  37. Troyanovsky, R.B., Sokolov, E. & Troyanovsky, S.M. Adhesive and lateral E-cadherin dimers are mediated by the same interface. Mol. Cell. Biol. 23, 7965–7972 (2003).

    Article  CAS  Google Scholar 

  38. Di Giovine, P. et al. Structure of herpes simplex virus glycoprotein D bound to the human receptor nectin-1. PLoS Pathog. 7, e1002277 (2011).

    Article  CAS  Google Scholar 

  39. Le Du, M.H., Stigbrand, T., Taussig, M.J., Menez, A. & Stura, E.A. Crystal structure of alkaline phosphatase from human placenta at 1.8 A resolution. Implication for a substrate specificity. J. Biol. Chem. 276, 9158–9165 (2001).

    Article  CAS  Google Scholar 

  40. Lackmann, M. et al. Ligand for EPH-related kinase (LERK) 7 is the preferred high affinity ligand for the HEK receptor. J. Biol. Chem. 272, 16521–16530 (1997).

    Article  CAS  Google Scholar 

  41. Pabbisetty, K.B. et al. Kinetic analysis of the binding of monomeric and dimeric ephrins to Eph receptors: correlation to function in a growth cone collapse assay. Protein Sci. 16, 355–361 (2007).

    Article  CAS  Google Scholar 

  42. Dong, X. et al. Crystal structure of the V domain of human Nectin-like molecule-1/Syncam3/Tsll1/Igsf4b, a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule. J. Biol. Chem. 281, 10610–10617 (2006).

    Article  CAS  Google Scholar 

  43. Fogel, A.I. et al. N-glycosylation at the SynCAM (synaptic cell adhesion molecule) immunoglobulin interface modulates synaptic adhesion. J. Biol. Chem. 285, 34864–34874 (2010).

    Article  CAS  Google Scholar 

  44. Jones, E.Y., Davis, S.J., Williams, A.F., Harlos, K. & Stuart, D.I. Crystal structure at 2.8 A resolution of a soluble form of the cell adhesion molecule CD2. Nature 360, 232–239 (1992).

    Article  CAS  Google Scholar 

  45. Velikovsky, C.A. et al. Structure of natural killer receptor 2B4 bound to CD48 reveals basis for heterophilic recognition in signaling lymphocyte activation molecule family. Immunity 27, 572–584 (2007).

    Article  CAS  Google Scholar 

  46. Schwartz, J.C., Zhang, X., Fedorov, A.A., Nathenson, S.G. & Almo, S.C. Structural basis for co-stimulation by the human CTLA-4/B7–2 complex. Nature 410, 604–608 (2001).

    Article  CAS  Google Scholar 

  47. Stengel, K.F. et al. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc. Natl. Acad. Sci. USA 109, 5399–5404 (2012).

    Article  CAS  Google Scholar 

  48. Koehnke, J. et al. Splice form dependence of β-neurexin/neuroligin binding interactions. Neuron 67, 61–74 (2010).

    Article  CAS  Google Scholar 

  49. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Macromol. Crystallogr. A 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  50. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  51. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  52. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  53. Troyanovsky, R.B., Laur, O. & Troyanovsky, S.M. Stable and unstable cadherin dimers: mechanisms of formation and roles in cell adhesion. Mol. Biol. Cell 18, 4343–4352 (2007).

    Article  CAS  Google Scholar 

  54. Brooks, B.R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants from the US National Institutes of Health (AR44016 and AR057992 to S.M.T. and R01 GM062270 to L.S.) and from the National Science Foundation (MCB-0918535 to B.H.). Use of the Advanced Photon Source (APS) for data collection on human nectin-1 (D1–D3) and human nectin-4 (D1–D2) at beamline 24-ID-E was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract DE-AC02-06CH11357. X-ray data for all other nectins were acquired at the X4A and X4C beamlines of the National Synchrotron Light Source, Brookhaven National Laboratory (BNL); the beamlines are operated by the New York Structural Biology center. We thank J. Schwanof and R. Abramowitz at BNL and N. Sukumar at APS for support with synchrotron data collection.

Author information

Authors and Affiliations

Authors

Contributions

O.J.H., J.B. and X.J. determined and refined all crystal structures. O.J.H. produced all wild-type and mutant proteins. P.S.K. performed and analyzed the SPR experiments. G.A. performed and analyzed the AUC experiments. J.V. performed all bioinformatic analyses. S.H., R.B.T. and S.M.T. performed immunofluorescence and cross-linking studies. O.J.H., B.H. and L.S. designed experiments, analyzed data and wrote the manuscript.

Corresponding authors

Correspondence to Barry Honig or Lawrence Shapiro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6. (PDF 11089 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, O., Vendome, J., Brasch, J. et al. Nectin ectodomain structures reveal a canonical adhesive interface. Nat Struct Mol Biol 19, 906–915 (2012). https://doi.org/10.1038/nsmb.2366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2366

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing