Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The structural basis for the sensing and binding of cyclic di-GMP by STING

Abstract

STING (stimulator of interferon genes) is an essential signaling adaptor that mediates cytokine production in response to microbial invasion by directly sensing bacterial secondary messengers such as the cyclic dinucleotide bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP). STING's structure and its binding mechanism to cyclic dinucleotides were unknown. We report here the crystal structures of the STING cytoplasmic domain and its complex with c-di-GMP, thus providing the structural basis for understanding STING function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of hSTING in complex with c-di-GMP and multiple sequence alignment of STING from different species.
Figure 2: Ribbon representation of hSTING structures.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Takeuchi, O. & Akira, S. Immunol. Rev. 227, 75–86 (2009).

    Article  CAS  Google Scholar 

  2. Barbalat, R., Ewald, S.E., Mouchess, M.L. & Barton, G.M. Annu. Rev. Immunol. 29, 185–214 (2011).

    Article  CAS  Google Scholar 

  3. Ishikawa, H. & Barber, G.N. Nature 455, 674–678 (2008).

    Article  CAS  Google Scholar 

  4. Ishikawa, H., Ma, Z. & Barber, G.N. Nature 461, 788–792 (2009).

    Article  CAS  Google Scholar 

  5. Sun, W. et al. Proc. Natl. Acad. Sci. USA 106, 8653–8658 (2009).

    Article  CAS  Google Scholar 

  6. Zhong, B. et al. Immunity 29, 538–550 (2008).

    Article  CAS  Google Scholar 

  7. Jin, L. et al. Mol. Cell Biol. 28, 5014–5026 (2008).

    Article  CAS  Google Scholar 

  8. Tamayo, R., Pratt, J.T. & Camilli, A. Annu. Rev. Microbiol. 61, 131–148 (2007).

    Article  CAS  Google Scholar 

  9. Jin, L. et al. J. Immunol. 187, 2595–2601 (2011).

    Article  CAS  Google Scholar 

  10. Burdette, D.L. et al. Nature 478, 515–518 (2011).

    Article  CAS  Google Scholar 

  11. Holm, L. & Rosenstrom, P. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  Google Scholar 

  12. Deng, J. et al. Proc. Natl. Acad. Sci. USA 105, 1499–1504 (2008).

    Article  CAS  Google Scholar 

  13. Krissinel, E. & Henrick, K. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  Google Scholar 

  14. Chen, W., Kuolee, R. & Yan, H. Vaccine 28, 3080–3085 (2010).

    Article  CAS  Google Scholar 

  15. Ouyang, S. et al. Immunity published online, doi:10.1016/j.immuni.2012.03.019 (10 May 2012).

  16. Guerrero, S.A., Hecht, H.J., Hofmann, B., Biebl, H. & Singh, M. Appl. Microbiol. Biotechnol. 56, 718–723 (2001).

    Article  CAS  Google Scholar 

  17. Kabsch, W. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  18. Adams, P.D. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  19. Emsley, P. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  20. Jeanmougin, F., Thompson, J.D., Gouy, M., Higgins, D.G. & Gibson, T.J. Trends Biochem. Sci. 23, 403–405 (1998).

    Article  CAS  Google Scholar 

  21. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. Bioinformatics 15, 305–308 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Shanghai Synchrotron Radiation Facilities (SSRF), China, and the Photon Factory (PF) at High Energy Accelerator Research Organization (KEK), Japan for help with data collection, and M. Tian and L. Finci for language editing. This work was supported by funds from the National Basic Research Program of China 973 (No. 2011CB911103 to X.-D.S.) and National High Technology, 863 Program (2006AA02A317 to X.-D.S.). Peking University's 985 and 211 grants are highly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

Y.-H.H., assisted by X.-X.D., accomplished protein expression, purification and other biochemistry experiments as well as crystallization, performed some data analysis and prepared the manuscript. Data collection and processing were performed by Y.-H.H., X.-Y.L. and X.-D.S. Phase determination, model building and structure refinement were accomplished by X.-Y.L., Y.-H.H. and X.-D.S. Y.-H.H., X.-Y.L. and X.-D.S. analyzed the structures and wrote the paper. Z.-F.J. and X.-D.S. initiated, designed and supervised the project.

Corresponding author

Correspondence to Xiao-Dong Su.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 748 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YH., Liu, XY., Du, XX. et al. The structural basis for the sensing and binding of cyclic di-GMP by STING. Nat Struct Mol Biol 19, 728–730 (2012). https://doi.org/10.1038/nsmb.2333

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2333

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing