Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translational control by changes in poly(A) tail length: recycling mRNAs

Abstract

Beyond the well-known function of poly(A) tail length in mRNA stability, recent years have witnessed an explosion of information about how changes in tail length and the selection of alternative polyadenylation sites contribute to the translational regulation of a large portion of the genome. The mechanisms and factors mediating nuclear and cytoplasmic changes in poly(A) tail length have been studied in great detail, the targets of these mechanisms have been identified—in some cases by genome-wide screenings—and changes in poly(A) tail length are now implicated in a number of physiological and pathological processes. However, in very few cases have all three levels—mechanisms, targets and functions—been studied together.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model for APA regulation.
Figure 2: Examples of cytoplasmic deadenylation.
Figure 3: Recycling of αCaMKII mRNA in neurons.
Figure 4: Recycling of maternal mRNAs in oocytes during meiosis.

Similar content being viewed by others

References

  1. Di Giammartino, D.C., Nishida, K. & Manley, J.L. Mechanisms and consequences of alternative polyadenylation. Mol. Cell 43, 853–866 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang, X., Virtanen, A. & Kleiman, F.E. To polyadenylate or to deadenylate: that is the question. Cell Cycle 9, 4437–4449 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wells, S.E., Hillner, P.E., Vale, R.D. & Sachs, A.B. Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2, 135–140 (1998).

    CAS  PubMed  Google Scholar 

  4. Kahvejian, A., Svitkin, Y.V., Sukarieh, R., M′Boutchou, M.N. & Sonenberg, N. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev. 19, 104–113 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Beilharz, T.H., Humphreys, D.T. & Preiss, T. miRNA Effects on mRNA closed-loop formation during translation initiation. Prog. Mol. Subcell. Biol. 50, 99–112 (2010).

    CAS  PubMed  Google Scholar 

  6. Dever, T.E. Gene-specific regulation by general translation factors. Cell 108, 545–556 (2002).

    CAS  PubMed  Google Scholar 

  7. Abaza, I. & Gebauer, F. Trading translation with RNA-binding proteins. RNA 14, 404–409 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Braun, J.E., Huntzinger, E., Fauser, M. & Izaurralde, E. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44, 120–133 (2011).

    CAS  PubMed  Google Scholar 

  9. Fabian, M.R. et al. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4–NOT. Nat. Struct. Mol. Biol. 18, 1211–1217 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Chekulaeva, M. et al. miRNA repression involves GW182-mediated recruitment of CCR4–NOT through conserved W-containing motifs. Nat. Struct. Mol. Biol. 18, 1218–1226 (2011). References 8–10 show that GW182 recruits the CCR4–NOT complex through direct interaction with Not1.

    CAS  PubMed  Google Scholar 

  11. Piqué, M., Lopez, J.M., Foissac, S., Guigo, R. & Mendez, R. A combinatorial code for CPE-mediated translational control. Cell 132, 434–448 (2008).

    PubMed  Google Scholar 

  12. Beilharz, T.H. & Preiss, T. Widespread use of poly(A) tail length control to accentuate expression of the yeast transcriptome. RNA 13, 982–997 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tian, B., Hu, J., Zhang, H. & Lutz, C.S. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res. 33, 201–212 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sandberg, R., Neilson, J.R., Sarma, A., Sharp, P.A. & Burge, C.B. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320, 1643–1647 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mayr, C. & Bartel, D.P. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673–684 (2009). References 14 and 15 show that proliferating and cancer cells consistently favor the use of upstream APA sites to express shortened 3′ UTRs, which result in increased protein expression, due in part to the exclusion of miRNA sites.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ji, Z., Lee, J.Y., Pan, Z., Jiang, B. & Tian, B. Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc. Natl. Acad. Sci. USA 106, 7028–7033 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ji, Z. & Tian, B. Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS ONE 4, e8419 (2009).

    PubMed  PubMed Central  Google Scholar 

  18. Mangone, M. et al. The landscape of C. elegans 3′UTRs. Science 329, 432–435 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Licatalosi, D.D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008). A high-throughput approach identifies a new function of Nova protein in APA site usage that favors long 3′-UTR isoforms.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. An, J.J. et al. Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell 134, 175–187 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Parker, R. & Song, H. The enzymes and control of eukaryotic mRNA turnover. Nat. Struct. Mol. Biol. 11, 121–127 (2004).

    CAS  PubMed  Google Scholar 

  23. Mendez, R. & Richter, J.D. Translational control by CPEB: a means to the end. Nat. Rev. Mol. Cell Biol. 2, 521–529 (2001).

    CAS  PubMed  Google Scholar 

  24. Goldstrohm, A.C. & Wickens, M. Multifunctional deadenylase complexes diversify mRNA control. Nat. Rev. Mol. Cell Biol. 9, 337–344 (2008).

    CAS  PubMed  Google Scholar 

  25. Halees, A.S., El-Badrawi, R. & Khabar, K.S. ARED Organism: expansion of ARED reveals AU-rich element cluster variations between human and mouse. Nucleic Acids Res. 36, D137–D140 (2008).

    CAS  PubMed  Google Scholar 

  26. Fenger-Grøn, M., Fillman, C., Norrild, B. & Lykke-Andersen, J. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol. Cell 20, 905–915 (2005).

    PubMed  Google Scholar 

  27. Belloc, E. & Mendez, R. A deadenylation negative feedback mechanism governs meiotic metaphase arrest. Nature 452, 1017–1021 (2008). Shows how the combination of CPEs and AREs define a crucial translational circuit in meiosis.

    CAS  PubMed  Google Scholar 

  28. Gherzi, R. et al. A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol. Cell 14, 571–583 (2004).

    CAS  PubMed  Google Scholar 

  29. Peng, S.S., Chen, C.Y., Xu, N. & Shyu, A.B. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J. 17, 3461–3470 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, J.H. & Richter, J.D. Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol. Cell 24, 173–183 (2006).

    CAS  PubMed  Google Scholar 

  31. Mendez, R. et al. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404, 302–307 (2000).

    CAS  PubMed  Google Scholar 

  32. Mendez, R., Murthy, K.G., Ryan, K., Manley, J.L. & Richter, J.D. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol. Cell 6, 1253–1259 (2000).

    CAS  PubMed  Google Scholar 

  33. Minshall, N., Reiter, M.H., Weil, D. & Standart, N. CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes. J. Biol. Chem. 282, 37389–37401 (2007).

    CAS  PubMed  Google Scholar 

  34. Igreja, C. & Izaurralde, E. CUP promotes deadenylation and inhibits decapping of mRNA targets. Genes Dev. 25, 1955–1967 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hosoda, N. et al. Anti-proliferative protein Tob negatively regulates CPEB3 target by recruiting Caf1 deadenylase. EMBO J. 30, 1311–1323 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gerber, A.P., Herschlag, D. & Brown, P.O. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol. 2, E79 (2004).

    PubMed  PubMed Central  Google Scholar 

  37. Goldstrohm, A.C., Hook, B.A., Seay, D.J. & Wickens, M. PUF proteins bind Pop2p to regulate messenger RNAs. Nat. Struct. Mol. Biol. 13, 533–539 (2006).

    CAS  PubMed  Google Scholar 

  38. Kadyrova, L.Y., Habara, Y., Lee, T.H. & Wharton, R.P. Translational control of maternal Cyclin B mRNA by Nanos in the Drosophila germline. Development 134, 1519–1527 (2007).

    CAS  PubMed  Google Scholar 

  39. Ota, R., Kotani, T. & Yamashita, M. Biochemical characterization of Pumilio1 and Pumilio2 in Xenopus oocytes. J. Biol. Chem. 286, 2853–2863 (2011).

    CAS  PubMed  Google Scholar 

  40. Graindorge, A. et al. Identification of CUG-BP1/EDEN-BP target mRNAs in Xenopus tropicalis. Nucleic Acids Res. 36, 1861–1870 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Moraes, K.C., Wilusz, C.J. & Wilusz, J. CUG-BP binds to RNA substrates and recruits PARN deadenylase. RNA 12, 1084–1091 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fabian, M.R. & Sonenberg, N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat. Struct. Mol. Biol. 19, 586–593 (2012).

    CAS  PubMed  Google Scholar 

  43. Fabian, M.R. et al. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol. Cell 35, 868–880 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bazzini, A.A., Lee, M.T. & Giraldez, A.J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Djuranovic, S., Nahvi, A. & Green, R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336, 237–240 (2012). References 44 and 45 show for the first time how a miRNA affects ribosome occupancy prior to deadenylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jing, Q. et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120, 623–634 (2005).

    CAS  PubMed  Google Scholar 

  47. Kim, H.H. et al. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev. 23, 1743–1748 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bhattacharyya, S.N., Habermacher, R., Martine, U., Closs, E.I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124 (2006).

    CAS  PubMed  Google Scholar 

  49. Asirvatham, A.J., Gregorie, C.J., Hu, Z., Magner, W.J. & Tomasi, T.B. MicroRNA targets in immune genes and the Dicer/Argonaute and ARE machinery components. Mol. Immunol. 45, 1995–2006 (2008).

    CAS  PubMed  Google Scholar 

  50. Collier, B., Gorgoni, B., Loveridge, C., Cooke, H.J. & Gray, N.K. The DAZL family proteins are PABP-binding proteins that regulate translation in germ cells. EMBO J. 24, 2656–2666 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cakmakci, N.G., Lerner, R.S., Wagner, E.J., Zheng, L. & Marzluff, W.F. SLIP1, a factor required for activation of histone mRNA translation by the stem-loop binding protein. Mol. Cell. Biol. 28, 1182–1194 (2008).

    CAS  PubMed  Google Scholar 

  52. Richter, J.D. CPEB: a life in translation. Trends Biochem. Sci. 32, 279–285 (2007).

    CAS  PubMed  Google Scholar 

  53. Theis, M., Si, K. & Kandel, E.R. Two previously undescribed members of the mouse CPEB family of genes and their inducible expression in the principal cell layers of the hippocampus. Proc. Natl. Acad. Sci. USA 100, 9602–9607 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, X.P. & Cooper, N.G. Comparative in silico analyses of cpeb1–4 with functional predictions. Bioinform. Biol. Insights 4, 61–83 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Novoa, I., Gallego, J., Ferreira, P.G. & Mendez, R. Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control. Nat. Cell Biol. 12, 447–456 (2010).

    CAS  PubMed  Google Scholar 

  56. Igea, A. & Mendez, R. Meiosis requires a translational positive loop where CPEB1 ensues its replacement by CPEB4. EMBO J. 29, 2182–2193 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang, Y.S., Kan, M.C., Lin, C.L. & Richter, J.D. CPEB3 and CPEB4 in neurons: analysis of RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA. EMBO J. 25, 4865–4876 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ortiz-Zapater, E. et al. Key contribution of CPEB4-mediated translational control to cancer progression. Nat. Med. 18, 83–90 (2012).

    CAS  Google Scholar 

  59. Pavlopoulos, E. et al. Neuralized1 activates CPEB3: a function for nonproteolytic ubiquitin in synaptic plasticity and memory storage. Cell 147, 1369–1383 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang, Y.S., Jung, M.Y., Sarkissian, M. & Richter, J.D. N-methyl-d-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and αCaMKII mRNA polyadenylation at synapses. EMBO J. 21, 2139–2148 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Atkins, C.M., Nozaki, N., Shigeri, Y. & Soderling, T.R. Cytoplasmic polyadenylation element binding protein-dependent protein synthesis is regulated by calcium/calmodulin-dependent protein kinase II. J. Neurosci. 24, 5193–5201 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Burns, D.M., D′Ambrogio, A., Nottrott, S. & Richter, J.D. CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature 473, 105–108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Charlesworth, A., Cox, L.L. & MacNicol, A.M. Cytoplasmic polyadenylation element (CPE)- and CPE-binding protein (CPEB)-independent mechanisms regulate early class maternal mRNA translational activation in Xenopus oocytes. J. Biol. Chem. 279, 17650–17659 (2004).

    CAS  PubMed  Google Scholar 

  64. Coll, O., Villalba, A., Bussotti, G., Notredame, C. & Gebauer, F. A novel, noncanonical mechanism of cytoplasmic polyadenylation operates in Drosophila embryogenesis. Genes Dev. 24, 129–134 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mazumder, B., Li, X. & Barik, S. Translation control: a multifaceted regulator of inflammatory response. J. Immunol. 184, 3311–3319 (2010).

    CAS  PubMed  Google Scholar 

  66. Kontoyiannis, D., Pasparakis, M., Pizarro, T.T., Cominelli, F. & Kollias, G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10, 387–398 (1999).

    CAS  PubMed  Google Scholar 

  67. Carballo, E., Lai, W.S. & Blackshear, P.J. Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science 281, 1001–1005 (1998).

    CAS  PubMed  Google Scholar 

  68. Marchese, F.P. et al. MAPKAP kinase 2 blocks tristetraprolin-directed mRNA decay by inhibiting CAF1 deadenylase recruitment. J. Biol. Chem. 285, 27590–27600 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Katsanou, V. et al. HuR as a negative posttranscriptional modulator in inflammation. Mol. Cell 19, 777–789 (2005).

    CAS  PubMed  Google Scholar 

  70. Tili, E. et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-α stimulation and their possible roles in regulating the response to endotoxin shock. J. Immunol. 179, 5082–5089 (2007).

    CAS  PubMed  Google Scholar 

  71. Mukhopadhyay, D., Houchen, C.W., Kennedy, S., Dieckgraefe, B.K. & Anant, S. Coupled mRNA stabilization and translational silencing of cyclooxygenase-2 by a novel RNA binding protein, CUGBP2. Mol. Cell 11, 113–126 (2003). Shows that CUGBP2 binding inhibits Cox-2 translation and stabilizes the mRNA.

    CAS  PubMed  Google Scholar 

  72. Young, L.E., Moore, A.E., Sokol, L., Meisner-Kober, N. & Dixon, D.A. The mRNA stability factor HuR inhibits MicroRNA-16 targeting of COX-2. Mol. Cancer Res. 10, 167–180 (2012).

    CAS  PubMed  Google Scholar 

  73. Xu, F. et al. Loss of repression of HuR translation by miR-16 may be responsible for the elevation of HuR in human breast carcinoma. J. Cell. Biochem. 111, 727–734 (2010).

    CAS  PubMed  Google Scholar 

  74. Chuvpilo, S. et al. Alternative polyadenylation events contribute to the induction of NF-ATc in effector T cells. Immunity 10, 261–269 (1999).

    CAS  PubMed  Google Scholar 

  75. Shell, S.A., Hesse, C., Morris, S.M. Jr. & Milcarek, C. Elevated levels of the 64-kDa cleavage stimulatory factor (CstF-64) in lipopolysaccharide-stimulated macrophages influence gene expression and induce alternative poly(A) site selection. J. Biol. Chem. 280, 39950–39961 (2005).

    CAS  PubMed  Google Scholar 

  76. Hall-Pogar, T., Zhang, H., Tian, B. & Lutz, C.S. Alternative polyadenylation of cyclooxygenase-2. Nucleic Acids Res. 33, 2565–2579 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Groppo, R. & Richter, J.D. CPEB control of NF-κB nuclear localization and IL-6 production mediates cellular senescence. Mol. Cell. Biol. 31, 2707–2714 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Burns, D.M. & Richter, J.D. CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev. 22, 3449–3460 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Costa-Mattioli, M., Sossin, W.S., Klann, E. & Sonenberg, N. Translational control of long-lasting synaptic plasticity and memory. Neuron 61, 10–26 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu, L. et al. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of α-CaMKII mRNA at synapses. Neuron 21, 1129–1139 (1998). Shows that CPEB is present in brain and regulates αCaMKII mRNA polyadenylation.

    CAS  PubMed  Google Scholar 

  81. Huang, Y.S., Carson, J.H., Barbarese, E. & Richter, J.D. Facilitation of dendritic mRNA transport by CPEB. Genes Dev. 17, 638–653 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Alarcon, J.M. et al. Selective modulation of some forms of Schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learn. Mem. 11, 318–327 (2004).

    PubMed  PubMed Central  Google Scholar 

  83. Berger-Sweeney, J., Zearfoss, N.R. & Richter, J.D. Reduced extinction of hippocampal-dependent memories in CPEB knockout mice. Learn. Mem. 13, 4–7 (2006).

    PubMed  Google Scholar 

  84. Atkins, C.M., Davare, M.A., Oh, M.C., Derkach, V. & Soderling, T.R. Bidirectional regulation of cytoplasmic polyadenylation element-binding protein phosphorylation by Ca2+/calmodulin-dependent protein kinase II and protein phosphatase 1 during hippocampal long-term potentiation. J. Neurosci. 25, 5604–5610 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Aslam, N., Kubota, Y., Wells, D. & Shouval, H.Z. Translational switch for long-term maintenance of synaptic plasticity. Mol. Syst. Biol. 5, 284 (2009).

    PubMed  PubMed Central  Google Scholar 

  86. Miller, S. et al. Disruption of dendritic translation of CaMKIIα impairs stabilization of synaptic plasticity and memory consolidation. Neuron 36, 507–519 (2002). Describes how memory requires αCaMKII local translation driven by its 3′ UTR.

    CAS  PubMed  Google Scholar 

  87. Zearfoss, N.R., Alarcon, J.M., Trifilieff, P., Kandel, E. & Richter, J.D. A molecular circuit composed of CPEB-1 and c-Jun controls growth hormone-mediated synaptic plasticity in the mouse hippocampus. J. Neurosci. 28, 8502–8509 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Shin, C.Y., Kundel, M. & Wells, D.G. Rapid, activity-induced increase in tissue plasminogen activator is mediated by metabotropic glutamate receptor-dependent mRNA translation. J. Neurosci. 24, 9425–9433 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Oe, S. & Yoneda, Y. Cytoplasmic polyadenylation element-like sequences are involved in dendritic targeting of BDNF mRNA in hippocampal neurons. FEBS Lett. 584, 3424–3430 (2010).

    CAS  PubMed  Google Scholar 

  90. Si, K., Choi, Y.B., White-Grindley, E., Majumdar, A. & Kandel, E.R. Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 140, 421–435 (2010).

    CAS  PubMed  Google Scholar 

  91. Keleman, K., Kruttner, S., Alenius, M. & Dickson, B.J. Function of the Drosophila CPEB protein Orb2 in long-term courtship memory. Nat. Neurosci. 10, 1587–1593 (2007).

    CAS  PubMed  Google Scholar 

  92. Majumdar, A. et al. Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory. Cell 148, 515–529 (2012). References 91 and 92 show that the Q-rich region of Orb2 is responsible for its oligomerization and prion-like features and is furthermore essential for fly behavior.

    CAS  PubMed  Google Scholar 

  93. Mastushita-Sakai, T., White-Grindley, E., Samuelson, J., Seidel, C. & Si, K. Drosophila Orb2 targets genes involved in neuronal growth, synapse formation, and protein turnover. Proc. Natl. Acad. Sci. USA 107, 11987–11992 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ashraf, S.I., McLoon, A.L., Sclarsic, S.M. & Kunes, S. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124, 191–205 (2006).

    CAS  PubMed  Google Scholar 

  95. Flavell, S.W. et al. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60, 1022–1038 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Miura, P., Amirouche, A., Clow, C., Belanger, G. & Jasmin, B.J. Brain-derived neurotrophic factor expression is repressed during myogenic differentiation by miR-206. J. Neurochem. 120, 230–238 (2012).

    CAS  PubMed  Google Scholar 

  97. Radzikinas, K. et al. A Shh/miR-206/BDNF cascade coordinates innervation and formation of airway smooth muscle. J. Neurosci. 31, 15407–15415 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, Q.T. et al. A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev. Cell 6, 133–144 (2004).

    CAS  PubMed  Google Scholar 

  99. Potireddy, S., Vassena, R., Patel, B.G. & Latham, K.E. Analysis of polysomal mRNA populations of mouse oocytes and zygotes: dynamic changes in maternal mRNA utilization and function. Dev. Biol. 298, 155–166 (2006).

    CAS  PubMed  Google Scholar 

  100. Rouhana, L. & Wickens, M. Autoregulation of GLD-2 cytoplasmic poly(A) polymerase. RNA 13, 188–199 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Graindorge, A., Thuret, R., Pollet, N., Osborne, H.B. & Audic, Y. Identification of post-transcriptionally regulated Xenopus tropicalis maternal mRNAs by microarray. Nucleic Acids Res. 34, 986–995 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Rouget, C. et al. Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 467, 1128–1132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Giraldez, A.J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    CAS  PubMed  Google Scholar 

  104. Staton, A.A., Knaut, H. & Giraldez, A.J. miRNA regulation of Sdf1 chemokine signaling provides genetic robustness to germ cell migration. Nat. Genet. 43, 204–211 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hilgers, V. et al. Neural-specific elongation of 3′ UTRs during Drosophila development. Proc. Natl. Acad. Sci. USA 108, 15864–15869 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ule, J. et al. An RNA map predicting Nova-dependent splicing regulation. Nature 444, 580–586 (2006).

    CAS  PubMed  Google Scholar 

  107. Bennett, C.L. et al. A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA→AAUGAA) leads to the IPEX syndrome. Immunogenetics 53, 435–439 (2001).

    CAS  PubMed  Google Scholar 

  108. Montero, L. & Nagamine, Y. Regulation by p38 mitogen-activated protein kinase of adenylate- and uridylate-rich element-mediated urokinase-type plasminogen activator (uPA) messenger RNA stability and uPA-dependent in vitro cell invasion. Cancer Res. 59, 5286–5293 (1999).

    CAS  PubMed  Google Scholar 

  109. Rimokh, R. et al. Rearrangement of CCND1 (BCL1/PRAD1) 3′ untranslated region in mantle-cell lymphomas and t(11q13)-associated leukemias. Blood 83, 3689–3696 (1994).

    CAS  PubMed  Google Scholar 

  110. Sibley, C.R. & Wood, M.J. The miRNA pathway in neurological and skeletal muscle disease: implications for pathogenesis and therapy. J. Mol. Med. 89, 1065–1077 (2011).

    CAS  PubMed  Google Scholar 

  111. Jackson, R.J. Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem. Soc. Trans. 33, 1231–1241 (2005).

    CAS  PubMed  Google Scholar 

  112. Pestova, T.V. & Hellen, C.U. Functions of eukaryotic factors in initiation of translation. Cold Spring Harb. Symp. Quant. Biol. 66, 389–396 (2001).

    CAS  PubMed  Google Scholar 

  113. Sachs, A. Physical and functional interactions between the mRNA cap structure and the poly(A) tail. in Translational Control of Gene Expression (eds. Sonenberg, N., Hershey, John W.B. & Mathews, M.) Ch. 10, 447–465 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2000).

  114. Preiss, T. & Hentze, W.M. Starting the protein synthesis machine: eukaryotic translation initiation. Bioessays 25, 1201–1211 (2003).

    CAS  PubMed  Google Scholar 

  115. Sonenberg, N. & Hinnebusch, A.G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Dickson, K.S., Thompson, S.R., Gray, N.K. & Wickens, M. Poly(A) polymerase and the regulation of cytoplasmic polyadenylation. J. Biol. Chem. 276, 41810–41816 (2001).

    CAS  PubMed  Google Scholar 

  117. Benoit, P., Papin, C., Kwak, J.E., Wickens, M. & Simonelig, M. PAP- and GLD-2-type poly(A) polymerases are required sequentially in cytoplasmic polyadenylation and oogenesis in Drosophila. Development 135, 1969–1979 (2008).

    CAS  PubMed  Google Scholar 

  118. Jenal, M. et al. The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell 149, 538–553 (2012).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Méndez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weill, L., Belloc, E., Bava, FA. et al. Translational control by changes in poly(A) tail length: recycling mRNAs. Nat Struct Mol Biol 19, 577–585 (2012). https://doi.org/10.1038/nsmb.2311

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing