Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heterochromatin protein 1 forms distinct complexes to direct histone deacetylation and DNA methylation

Abstract

DNA methylation, methylation of histone H3 at Lys9 (H3K9me3) and hypoacetylated histones are common molecular features of heterochromatin. Important details of their functions and inter-relationships remain unclear, however. In Neurospora crassa, H3K9me3 directs DNA methylation through a complex containing heterochromatin protein 1 (HP1) and the DNA methyltransferase DIM-2. We identified a distinct HP1 complex, HP1, CDP-2, HDA-1 and CHAP (HCHC), and found that it is responsible for silencing independently of DNA methylation. HCHC defects cause hyperacetylation of centromeric histones, greater accessibility of DIM-2 and hypermethylation of centromeric DNA. Loss of HCHC also causes mislocalization of the DIM-5 H3K9 methyltransferase at a subset of interstitial methylated regions, leading to selective DNA hypomethylation. We demonstrate that HP1 forms distinct DNA methylation and histone deacetylation complexes that work in parallel to assemble silent chromatin in N. crassa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aberrant DNA methylation in the cdp-2 mutant.
Figure 2: The CDP-2 chromodomain preferentially binds to H3K9 methylation and CDP-2 stability depends on HP1.
Figure 3: Mutation of cdp-2 causes lower H3K9me3 and HP1 localization at hypomethylated regions but no difference at hypermethylated regions compared with wild type.
Figure 4: CDP-2 is required for DIM-5 recruitment to regions with moderate RIP.
Figure 5: Identification of HCHC.
Figure 6: HCHC is required for normal histone H3 and H4 acetylation.
Figure 7: DIM-2 accessibility at centromere is enhanced in cdp-2 mutant.
Figure 8: HCHC is required for centromere silencing independent of DNA methylation.

Similar content being viewed by others

References

  1. Grewal, S.I. & Jia, S. Heterochromatin revisited. Nat. Rev. Genet. 8, 35–46 (2007).

    Article  CAS  Google Scholar 

  2. Beisel, C. & Paro, R. Silencing chromatin: comparing modes and mechanisms. Nat. Rev. Genet. 12, 123–135 (2011).

    Article  CAS  Google Scholar 

  3. Selker, E.U. Trichostatin A causes selective loss of DNA methylation in Neurospora. Proc. Natl. Acad. Sci. USA 95, 9430–9435 (1998).

    Article  CAS  Google Scholar 

  4. Freitag, M., Hickey, P.C., Khlafallah, T.K., Read, N.D. & Selker, E.U. HP1 is essential for DNA methylation in Neurospora. Mol. Cell 13, 427–434 (2004).

    Article  CAS  Google Scholar 

  5. Tamaru, H. & Selker, E.U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283 (2001).

    Article  CAS  Google Scholar 

  6. Tamaru, H. et al. Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat. Genet. 34, 75–79 (2003).

    Article  CAS  Google Scholar 

  7. Honda, S. & Selker, E.U. Direct interaction between DNA methyltransferase DIM-2 and HP1 is required for DNA methylation in Neurospora crassa. Mol. Cell. Biol. 28, 6044–6055 (2008).

    Article  CAS  Google Scholar 

  8. Lewis, Z.A. et al. Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa. Genome Res. 19, 427–437 (2009).

    Article  CAS  Google Scholar 

  9. Schalch, T. et al. High-affinity binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric heterochromatin. Mol. Cell 34, 36–46 (2009).

    Article  CAS  Google Scholar 

  10. Zhang, K., Mosch, K., Fischle, W. & Grewal, S.I. Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat. Struct. Mol. Biol. 15, 381–388 (2008).

    Article  CAS  Google Scholar 

  11. Fischer, T. et al. Diverse roles of HP1 proteins in heterochromatin assembly and functions in fission yeast. Proc. Natl. Acad. Sci. USA 106, 8998–9003 (2009).

    Article  CAS  Google Scholar 

  12. Hediger, F. & Gasser, S.M. Heterochromatin protein 1: don't judge the book by its cover. Curr. Opin. Genet. Dev. 16, 143–150 (2006).

    Article  CAS  Google Scholar 

  13. Motamedi, M.R. et al. HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms. Mol. Cell 32, 778–790 (2008).

    Article  CAS  Google Scholar 

  14. Sadaie, M. et al. Balance between distinct HP1 family proteins controls heterochromatin assembly in fission yeast. Mol. Cell. Biol. 28, 6973–6988 (2008).

    Article  CAS  Google Scholar 

  15. Borkovich, K.A. et al. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68, 1–108 (2004).

    Article  CAS  Google Scholar 

  16. Selker, E.U. et al. The methylated component of the Neurospora crassa genome. Nature 422, 893–897 (2003).

    Article  CAS  Google Scholar 

  17. Jacobs, S.A. et al. Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J. 20, 5232–5241 (2001).

    Article  CAS  Google Scholar 

  18. Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    Article  CAS  Google Scholar 

  19. Vogel, M.J., Peric-Hupkes, D. & van Steensel, B. Detection of in vivo protein-DNA interactions using DamID in mammalian cells. Nat. Protoc. 2, 1467–1478 (2007).

    Article  CAS  Google Scholar 

  20. Lewis, Z.A., Adhvaryu, K.K., Honda, S., Shiver, A.L. & Selker, E.U. Identification of DIM-7, a protein required to target the DIM-5 H3 methyltransferase to chromatin. Proc. Natl. Acad. Sci. USA 107, 8310–8315 (2010).

    Article  CAS  Google Scholar 

  21. Honda, S. & Selker, E.U. Tools for fungal proteomics: multifunctional Neurospora vectors for gene replacement, protein expression and protein purification. Genetics 182, 11–23 (2009).

    Article  CAS  Google Scholar 

  22. Smith, K.M. et al. H2B- and H3-specific histone deacetylases are required for DNA methylation in Neurospora crassa. Genetics 186, 1207–1216 (2010).

    Article  CAS  Google Scholar 

  23. Narlikar, G.J., Fan, H.Y. & Kingston, R.E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

    Article  CAS  Google Scholar 

  24. Ninomiya, Y., Suzuki, K., Ishii, C. & Inoue, H. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc. Natl. Acad. Sci. USA 101, 12248–12253 (2004).

    Article  CAS  Google Scholar 

  25. Lewis, Z.A. et al. DNA methylation and normal chromosome behavior in Neurospora depend on five components of a histone methyltransferase complex, DCDC. PLoS Genet. 6, e1001196 (2010).

    Article  Google Scholar 

  26. Honda, S. et al. The DMM complex prevents spreading of DNA methylation from transposons to nearby genes in Neurospora crassa. Genes Dev. 24, 443–454 (2010).

    Article  CAS  Google Scholar 

  27. Smith, K.M., Phatale, P.A., Sullivan, C.M., Pomraning, K.R. & Freitag, M. Heterochromatin is required for normal distribution of Neurospora crassa CenH3. Mol. Cell. Biol. 31, 2528–2542 (2011).

    Article  CAS  Google Scholar 

  28. Sugiyama, T. et al. SHREC, an effector complex for heterochromatic transcriptional silencing. Cell 128, 491–504 (2007).

    Article  CAS  Google Scholar 

  29. Sripathy, S.P., Stevens, J. & Schultz, D.C. The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol. Cell. Biol. 26, 8623–8638 (2006).

    Article  CAS  Google Scholar 

  30. Matsui, T. et al. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464, 927–931 (2010).

    Article  CAS  Google Scholar 

  31. Margolin, B.S. et al. A methylated Neurospora 5S rRNA pseudogene contains a transposable element inactivated by repeat-induced point mutation. Genetics 149, 1787–1797 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Colot, H.V. et al. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc. Natl. Acad. Sci. USA 103, 10352–10357 (2006).

    Article  CAS  Google Scholar 

  33. Davis, R.H . Neurospora: Contributions of a Model Organism (Oxford Univ. Press, 2000).

  34. Jacobs, S.A., Fischle, W. & Khorasanizadeh, S. Assays for the determination of structure and dynamics of the interaction of the chromodomain with histone peptides. Methods Enzymol. 376, 131–148 (2004).

    Article  CAS  Google Scholar 

  35. Margolin, B.S., Freitag, M. & Selker, E.U. Improved plasmids for gene targeting at the his-3 locus of Neurospora crassa by electroporation. Fungal Genet. Newsl. 44, 34–36 (1997).

    Google Scholar 

  36. Jia, S., Kobayashi, R. & Grewal, S.I. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nat. Cell Biol. 7, 1007–1013 (2005).

    Article  CAS  Google Scholar 

  37. Pall, M.L. & Brunelli, J.P. A series of six compact fungal transformation vectors containing polylinkers with multiple unique restriction sites. Fungal Genet. Newsl. 40, 59–62 (1993).

    Google Scholar 

Download references

Acknowledgements

We thank L.L. David and members of his proteomics facility at Oregon Health Sciences University for identifying DIM-2-associated proteins and T. Khalafallah for technical support in preliminary work. E.U.S. thanks S. Gasser and D. Schübeler (F. Miescher Institute) and G. Almouzni (Institut Curie) for hosting him during a sabbatical. This work was funded by grant GM025690 to E.U.S. from the US National Institutes of Health. We acknowledge the Neurospora Genome Project and the Fungal Genetic Stock Center for providing materials.

Author information

Authors and Affiliations

Authors

Contributions

S.H. and E.U.S. designed the research. Z.A.L. and E.U.S. carried out the MeDIP-chip experiments; E.U.S. and K.S. carried out CDP-2 purification; R.S. carried out mass spectrometry to identify CDP-2-associated proteins; W.F. carried out anisotropic binding assays to determine the CDP-2 chromodomain binding activity and S.H. carried out the other experiments. S.H., Z.A.L. and E.U.S. analyzed the data; S.H. and E.U.S. wrote the paper and Z.A.L., K.S. W.F. and R.S. edited the paper.

Corresponding author

Correspondence to Eric U Selker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 1274 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honda, S., Lewis, Z., Shimada, K. et al. Heterochromatin protein 1 forms distinct complexes to direct histone deacetylation and DNA methylation. Nat Struct Mol Biol 19, 471–477 (2012). https://doi.org/10.1038/nsmb.2274

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing