Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The extracellular chaperone clusterin sequesters oligomeric forms of the amyloid-β1−40 peptide

Abstract

In recent genome-wide association studies, the extracellular chaperone protein, clusterin, has been identified as a newly-discovered risk factor in Alzheimer's disease. We have examined the interactions between human clusterin and the Alzheimer's disease–associated amyloid-β1−40 peptide (Aβ1−40), which is prone to aggregate into an ensemble of oligomeric intermediates implicated in both the proliferation of amyloid fibrils and in neuronal toxicity. Using highly sensitive single-molecule fluorescence methods, we have found that Aβ1−40 forms a heterogeneous distribution of small oligomers (from dimers to 50-mers), all of which interact with clusterin to form long-lived, stable complexes. Consequently, clusterin is able to influence both the aggregation and disaggregation of Aβ1−40 by sequestration of the Aβ oligomers. These results not only elucidate the protective role of clusterin but also provide a molecular basis for the genetic link between clusterin and Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bulk and single-molecule studies of Aβ1−40.
Figure 2: The effects of clusterin on the aggregation of Aβ1−40.
Figure 3: The effects of clusterin on the disaggregation of Aβ1−40 fibrils.

Similar content being viewed by others

References

  1. Chiti, F. & Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Bucciantini, M. et al. Prefibrillar amyloid protein aggregates share common features of cytotoxicity. J. Biol. Chem. 279, 31374–31382 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Cleary, J.P. et al. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat. Neurosci. 8, 79–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Lesné, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357 (2006).

    Article  PubMed  Google Scholar 

  5. Selkoe, D.J. Soluble oligomers of the amyloid-β protein impair synaptic plasticity and behavior. Behav. Brain Res. 192, 106–113 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bucciantini, M. et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Knowles, T.P.J. et al. An analytical solution to the kinetics of breakable filament assembly. Science 326, 1533–1537 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Li, H., Ying, L., Green, J.J., Balasubramanian, S. & Klenerman, D. Ultrasensitive coincidence fluorescence detection of single DNA molecules. Anal. Chem. 75, 1664–1670 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764–774 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Orte, A. et al. Direct characterization of amyloidogenic oligomers by single-molecule fluorescence. Proc. Natl. Acad. Sci. USA 105, 14424–14429 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dunne, P.D. et al. DySCo: quantitating associations of membrane proteins using two-color single-molecule tracking. Biophys. J. 97, L5–L7 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chiou, A. et al. Probing neuroserpin polymerization and interaction with amyloid-β peptides using single molecule fluorescence. Biophys. J. 97, 2306–2315 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lambert, J.-C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat. Genet. 41, 1094–1099 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat. Genet. 41, 1088–1093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kida, E., Choi-Miura, N.-H. & Wisniewski, K.E. Deposition of apolipoproteins E and J in senile plaques is topographically determined in both Alzheimer's disease and Down's syndrome brain. Brain Res. 685, 211–216 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Choi-Miura, N.H. et al. SP-40,40 is a constituent of Alzheimer's amyloid. Acta Neuropathol. 83, 260–264 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Luheshi, L.M. et al. Systematic in vivo analysis of the intrinsic determinants of amyloid-β pathogenicity. PLoS Biol. 5, e290 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hickman, S.E., Allison, E.K. & El Khoury, J. Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer's disease mice. J. Neurosci. 28, 8354–8360 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schauerte, J.A. et al. Simultaneous single-molecule fluorescence and conductivity studies reveal distinct classes of Aβ species on lipid bilayers. Biochemistry 49, 3031–3039 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Ding, H., Wong, P.T., Lee, E.L., Gafni, A. & Steel, D.G. Determination of the oligomer size of amyloidogenic protein β-amyloid(1–40) by single-molecule spectroscopy. Biophys. J. 97, 912–921 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnson, R.D., Schauerte, J.A., Wisser, K.C., Gafni, A. & Steel, D.G. Direct observation of single amyloid-β(1−40) oligomers on live cells: binding and growth at physiological concentrations. PLoS ONE 6, e23970 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mehta, P.D. et al. Plasma and cerebrospinal fluid levels of amyloid-β proteins 1−40 and 1−42 in Alzheimer disease. Arch. Neurol. 57, 100–105 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Garzon-Rodriguez, W., Sepulveda-Becerra, M., Milton, S. & Glabe, C.G. Soluble amyloid Aβ-(1–40) exists as a stable dimer at low concentrations. J. Biol. Chem. 272, 21037–21044 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Oosawa, F. Size distribution of protein polymers. J. Theor. Biol. 27, 69–86 (1970).

    Article  CAS  PubMed  Google Scholar 

  25. Carulla, N. et al. Molecular recycling within amyloid fibrils. Nature 436, 554–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Sánchez, L. et al. Aβ40 and Aβ42 amyloid fibrils exhibit distinct molecular recycling properties. J. Am. Chem. Soc. 133, 6505–6508 (2011).

    Article  PubMed  Google Scholar 

  27. O'Nuallain, B., Shivaprasad, S., Kheterpal, I. & Wetzel, R. Thermodynamics of Aβ(1−40) amyloid fibril elongation. Biochemistry 44, 12709–12718 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Auer, S., Dobson, C.M. & Vendruscolo, M. Characterization of the nucleation barriers for protein aggregation and amyloid formation. HFSP J. 1, 137–146 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yerbury, J.J. et al. The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures. FASEB J. 21, 2312–2322 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Matsubara, E., Frangione, B. & Ghiso, J. Characterization of apolipoprotein J-Alzheimer's Aβ interaction. J. Biol. Chem. 270, 7563–7567 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Koffie, R.M. et al. Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc. Natl. Acad. Sci. USA 106, 4012–4017 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lambert, M.P. et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Knowles, T.P.J. et al. Kinetics and thermodynamics of amyloid formation from direct measurements of fluctuations in fibril mass. Proc. Natl. Acad. Sci. USA 104, 10016–10021 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Raman, B. et al. αB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid β-peptide and β 2-microglobulin. Biochem. J. 392, 573–581 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shammas, S.L. et al. Binding of the molecular chaperone αB-crystallin to Aβ amyloid fibrils inhibits fibril elongation. Biophys. J. 101, 1681–1689 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wilson, M.R., Yerbury, J.J. & Poon, S. Extracellular chaperones and amyloids. in Heat Shock Proteins and the Brain: Implications for Neurodegenerative Diseases and Neuroprotection, Vol. 3 (eds. Asea, A.A.A. & Brown, I.R.) 283–315 (Springer Netherlands, 2008).

  37. Bateman, R.J. et al. Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat. Med. 12, 856–861 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nielsen, H.M., Veerhuis, R., Holmqvist, B. & Janciauskiene, S. Binding and uptake of Aβ1−42 by primary human astrocytes in vitro. Glia 57, 978–988 (2009).

    Article  PubMed  Google Scholar 

  39. Mawuenyega, K.G. et al. Decreased clearance of CNS β-amyloid in Alzheimer's disease. Science 330, 1774 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nuutinen, T. et al. Amyloid-β 1−42 induced endocytosis and clusterin/apoJ protein accumulation in cultured human astrocytes. Neurochem. Int. 50, 540–547 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Wyatt, A.R. et al. Clusterin facilitates in vivo clearance of extracellular misfolded proteins. Cell. Mol. Life Sci. 68, 3919–3931 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Luheshi, L.M. et al. Sequestration of the Aβ peptide prevents toxicity and promotes degradation in vivo. PLoS Biol. 8, e1000334 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Teplow, D.B., Kheterpal, I. & Wetzel, R. Preparation of amyloid-β protein for structural and functional studies. Methods Enzymol. 413, 20–33 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Wilson, M.R. & Easterbrook-Smith, S.B. Clusterin binds by a multivalent mechanism to the Fc and Fab regions of IgG. Biochim. Biophys. Acta 1159, 319–326 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.N. is supported by the Marshall Aid Commemoration Commission (Marshall Scholarship) and the National Science Foundation (Graduate Research Fellowship). A.O. is supported by an European Reintegration Grant from the European Union FP7. R.W.C. acknowledges a Research Fellowship from Christ's College. B.B. is supported by an Alzheimer's Research Trust Fellowship. S.H. is supported by a Biotechnology and Biological Sciences Research Council Fellowship. K.A.G. is supported by fellowships from the Engineering and Physical Sciences Research Council and Studienstiftung des deutschen Volkes. S.M. is supported by a Royal Society Dorothy Hodgkin Fellowship. M.R.W. acknowledges the support of the Australian Research Council (DP0773555 and DP0984341). D.K. and C.M.D. are supported by the Wellcome Trust and the Medical Research Council. D.K. is supported by the Augustus Newman Foundation. Additionally, we would like to thank J. McColl and P. Dunne for advice on using the TIRFM instrument, S. Shammas and F. Newby for help with peptide and protein preparation, and T. Jahn, N. Cremades, L. Luheshi, T. Knowles, S. Cohen, A. Chen and J. Kumita for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

P.N., A.O., S.M., M.R.W., C.M.D. and D.K. designed the experiments. P.N. conducted the cTCCD experiments. P.N., A.O. and R.W.C. refined analysis methods. A.O. and R.W.C. developed instrumentation. R.W.C. wrote the analysis software, and designed, built and calibrated the scanning stage used for cTCCD experiments. P.N. and B.B. conducted the bulk scale experiments. P.N. and K.A.G. conducted the TIRFM experiments. P.N., B.B., K.A.G. and A.O. analyzed the data. S.H. labeled the clusterin that was purified and provided by M.R.W. All authors discussed and interpreted results and contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Mark R Wilson, Christopher M Dobson or David Klenerman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Methods and Supplementary Discussion (PDF 955 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayan, P., Orte, A., Clarke, R. et al. The extracellular chaperone clusterin sequesters oligomeric forms of the amyloid-β1−40 peptide. Nat Struct Mol Biol 19, 79–83 (2012). https://doi.org/10.1038/nsmb.2191

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2191

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing