Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The prospects for designer single-stranded RNA-binding proteins

An Erratum to this article was published on 06 April 2011

This article has been updated

Abstract

Spectacular progress has been made in the design of proteins that recognize double-stranded DNA with a chosen specificity, to the point that designer DNA-binding proteins can be ordered commercially. This success raises the question of whether it will be possible to engineer libraries of proteins that can recognize RNA with tailored specificity. Given the recent explosion in the number and diversity of RNA species demonstrated to play roles in biology, designer RNA-binding proteins are set to become valuable tools, both in the research laboratory and potentially in the clinic. Here we discuss the prospects for the realization of this idea.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible uses of engineered RNA-binding proteins (RBPs).
Figure 2: Structures of RNA-recognition motifs (RRMs) and pumilio repeat (PUF) domain complexes with single-stranded RNAs (ssRNAs).
Figure 3: Structures of zinc-finger (ZF)–RNA complexes.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 17 March 2011

    In the version of this article initially published, in several instances "guanidine" should have read "guanine", "uridine" should have read "uracil" and "adenine" should have read "adenosine"; in two instances; "tetratrispolin" should have read "tristetraprolin"; and Figure 2c,d should have illustrated the structure from PDB record 1M8Y. These errors have been corrected in the HTML and PDF versions of the article.

References

  1. García-Martinez, J., Aranda, A. & Pérez-Ortín, J.E. Genomic run-on evaluates transcription rates for all yeast genes and identifies gene regulatory mechanisms. Mol. Cell 15, 303–313 (2004).

    Article  PubMed  Google Scholar 

  2. Hieronymus, H. & Silver, P.A. Genome-wide analysis of RNA-protein interactions illustrates specificity of the mRNA export machinery. Nat. Genet. 33, 155–161 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Van Der Kelen, K., Beyaert, R., Inze, D. & De Veylder, L. Translational control of eukaryotic gene expression. Crit. Rev. Biochem. Mol. Biol. 44, 143–168 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Nilsen, T.W. & Graveley, B.R. Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mattick, J.S. & Makunin, I.V. Non-coding RNA. Hum. Mol. Genet. 15 Spec No 1, R17–R29 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Friedman, R.C., Farh, K.K., Burge, C.B. & Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sera, T. Zinc-finger-based artificial transcription factors and their applications. Adv. Drug Deliv. Rev. 61, 513–526 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Cathomen, T. & Joung, J.K. Zinc-finger nucleases: the next generation emerges. Mol. Ther. 16, 1200–1207 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Carroll, D. Progress and prospects: Zinc-finger nucleases as gene therapy agents. Gene Ther. 15, 1463–1468 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Camenisch, T.D., Brilliant, M.H. & Segal, D.J. Critical parameters for genome editing using zinc finger nucleases. Mini Rev. Med. Chem. 8, 669–676 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Rebar, E.J. Development of pro-angiogenic engineered transcription factors for the treatment of cardiovascular disease. Expert Opin. Investig. Drugs 13, 829–839 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, Q. & Paroo, Z. Biochemical principles of small RNA pathways. Annu. Rev. Biochem. 79, 295–319 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Perrimon, N., Ni, J.Q. & Perkins, L. In vivo RNAi: today and tomorrow. Cold Spring Harb. Perspect. Biol. 2, a003640 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vaishnaw, A.K. et al. A status report on RNAi therapeutics. Silence 1, 14 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. De Gregorio, E., Preiss, T. & Hentze, M.W. Translation driven by an eIF4G core domain in vivo. EMBO J. 18, 4865–4874 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Coller, J.M., Gray, N.K. & Wickens, M.P. mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation. Genes Dev. 12, 3226–3235 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Auweter, S.D., Oberstrass, F.C. & Allain, F.H. Sequence-specific binding of single-stranded RNA: is there a code for recognition? Nucleic Acids Res. 34, 4943–4959 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, Y. & Varani, G. Protein families and RNA recognition. FEBS J. 272, 2088–2097 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Cléry, A., Blatter, M. & Allain, F.H. RNA recognition motifs: boring? Not quite. Curr. Opin. Struct. Biol. 18, 290–298 (2008).

    Article  PubMed  Google Scholar 

  22. Dominguez, C., Fisette, J.F., Chabot, B. & Allain, F.H. Structural basis of G-tract recognition and encaging by hnRNP F quasi-RRMs. Nat. Struct. Mol. Biol. 17, 853–861 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Oubridge, C., Ito, N., Evans, P.R., Teo, C.H. & Nagai, K. Crystal structure at 1.92 Å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372, 432–438 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Laird-Offringa, I.A. & Belasco, J.G. Analysis of RNA-binding proteins by in vitro genetic selection: identification of an amino acid residue important for locking U1A onto its RNA target. Proc. Natl. Acad. Sci. USA 92, 11859–11863 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, Y., Mandic, J. & Varani, G. Cell-free selection of RNA-binding proteins using in vitro compartmentalization. Nucleic Acids Res. 36, e128 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Auweter, S.D. et al. Molecular basis of RNA recognition by the human alternative splicing factor Fox-1. EMBO J. 25, 163–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Edwards, T.A., Pyle, S.E., Wharton, R.P. & Aggarwal, A.K. Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell 105, 281–289 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Miller, M.T., Higgin, J.J. & Hall, T.M. Basis of altered RNA-binding specificity by PUF proteins revealed by crystal structures of yeast Puf4p. Nat. Struct. Mol. Biol. 15, 397–402 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, X., McLachlan, J., Zamore, P.D. & Hall, T.M. Modular recognition of RNA by a human pumilio-homology domain. Cell 110, 501–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y., Opperman, L., Wickens, M. & Hall, T.M. Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein. Proc. Natl. Acad. Sci. USA 106, 20186–20191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Moscou, M.J. & Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Cheong, C.G. & Hall, T.M. Engineering RNA sequence specificity of Pumilio repeats. Proc. Natl. Acad. Sci. USA 103, 13635–13639 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ozawa, T., Natori, Y., Sato, M. & Umezawa, Y. Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat. Methods 4, 413–419 (2007).

    CAS  PubMed  Google Scholar 

  35. Tilsner, J. et al. Live-cell imaging of viral RNA genomes using a Pumilio-based reporter. Plant J. 57, 758–770 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, Y., Cheong, C.G., Hall, T.M. & Wang, Z. Engineering splicing factors with designed specificities. Nat. Methods 6, 825–830 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Valverde, R., Edwards, L. & Regan, L. Structure and function of KH domains. FEBS J. 275, 2712–2726 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. García-Mayoral, M.F. et al. The structure of the C-terminal KH domains of KSRP reveals a noncanonical motif important for mRNA degradation. Structure 15, 485–498 (2007).

    Article  PubMed  Google Scholar 

  39. Liu, Z. et al. Structural basis for recognition of the intron branch site RNA by splicing factor 1. Science 294, 1098–1102 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Beuth, B., Pennell, S., Arnvig, K.B., Martin, S.R. & Taylor, I.A. Structure of a Mycobacterium tuberculosis NusA-RNA complex. EMBO J. 24, 3576–3587 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chmiel, N.H., Rio, D.C. & Doudna, J.A. Distinct contributions of KH domains to substrate binding affinity of Drosophila P-element somatic inhibitor protein. RNA 12, 283–291 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Braddock, D.T., Louis, J.M., Baber, J.L., Levens, D. & Clore, G.M. Structure and dynamics of KH domains from FBP bound to single-stranded DNA. Nature 415, 1051–1056 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Taylor, G.A. et al. A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4, 445–454 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Hudson, B.P., Martinez-Yamout, M.A., Dyson, H.J. & Wright, P.E. Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat. Struct. Mol. Biol. 11, 257–264 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Pagano, J.M., Farley, B.M., McCoig, L.M. & Ryder, S.P. Molecular basis of RNA recognition by the embryonic polarity determinant MEX-5. J. Biol. Chem. 282, 8883–8894 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Lu, D., Searles, M.A. & Klug, A. Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition. Nature 426, 96–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. De Guzman, R.N. et al. Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element. Science 279, 384–388 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Dey, A., York, D., Smalls-Mantey, A. & Summers, M.F. Composition and sequence-dependent binding of RNA to the nucleocapsid protein of Moloney murine leukemia virus. Biochemistry 44, 3735–3744 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Morellet, N. et al. Structure of the complex between the HIV-1 nucleocapsid protein NCp7 and the single-stranded pentanucleotide d(ACGCC). J. Mol. Biol. 283, 419–434 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Guerrerio, A.L. & Berg, J.M. Design of single-stranded nucleic acid binding peptides based on nucleocapsid CCHC-box zinc-binding domains. J. Am. Chem. Soc. 132, 9638–9643 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Beddow, A.L., Richards, S.A., Orem, N.R. & Macara, I.G. The Ran/TC4 GTPase-binding domain: identification by expression cloning and characterization of a conserved sequence motif. Proc. Natl. Acad. Sci. USA 92, 3328–3332 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Higa, M.M., Alam, S.L., Sundquist, W.I. & Ullman, K.S. Molecular characterization of the Ran-binding zinc finger domain of Nup153. J. Biol. Chem. 282, 17090–17100 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Alam, S.L. et al. Ubiquitin interactions of NZF zinc fingers. EMBO J. 23, 1411–1421 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Loughlin, F.E. et al. The zinc fingers of the SR-like protein ZRANB2 are single-stranded RNA-binding domains that recognize 5′ splice site-like sequences. Proc. Natl. Acad. Sci. USA 106, 5581–5586 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Segal, D.J. & Barbas, C.F. III. Custom DNA-binding proteins come of age: polydactyl zinc-finger proteins. Curr. Opin. Biotechnol. 12, 632–637 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Isalan, M., Klug, A. & Choo, Y. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat. Biotechnol. 19, 656–660 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hargous, Y. et al. Molecular basis of RNA recognition and TAP binding by the SR proteins SRp20 and 9G8. EMBO J. 25, 5126–5137 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sickmier, E.A. et al. Structural basis for polypyrimidine tract recognition by the essential pre-mRNA splicing factor U2AF65. Mol. Cell 23, 49–59 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the National Health and Medical Research Council of Australia to J.P.M.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joel P Mackay or David J Segal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackay, J., Font, J. & Segal, D. The prospects for designer single-stranded RNA-binding proteins. Nat Struct Mol Biol 18, 256–261 (2011). https://doi.org/10.1038/nsmb.2005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2005

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research