Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reduced Rif2 and lack of Mec1 target short telomeres for elongation rather than double-strand break repair

Abstract

Telomerase in Saccharomyces cerevisiae binds and preferentially elongates short telomeres, and this process requires the checkpoint kinase Tel1. Here we show that the Mre11 complex bound preferentially to short telomeres, which could explain the preferential binding of Tel1 to these ends. Compared to wild-type length telomeres, short telomeres generated by incomplete replication had low levels of the telomerase inhibitory protein Rif2. Moreover, in the absence of Rif2, Tel1 bound equally well to short and wild-type length telomeres, suggesting that low Rif2 content marks short telomeres for preferential elongation. In congenic strains, a double-strand break bound at least 140 times as much Mec1 in the first cell cycle after breakage as did a short telomere in the same time frame. Binding of replication protein A was also much lower at short telomeres. The absence of Mec1 at short telomeres could explain why they do not trigger a checkpoint-mediated cell-cycle arrest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MRX binds preferentially to short telomeres.
Figure 2: Mec1-HA does not bind preferentially to short telomeres, even in tel1Δ cells.
Figure 3: Mec1 and Rfa1 bind DSBs, even when the break is adjacent to telomeric DNA.
Figure 4: Rfa1 binding and H2A phosphorylation are similar at short and wild-type length telomeres.
Figure 5: Rif2 (and Rap1) but not Rif1 or Yku80 occupancy are reduced at short telomeres.
Figure 6: Preferential binding of Tel1 to short telomeres is lost in rif2Δ cells.

Similar content being viewed by others

References

  1. Gall, J.G. in Telomeres (eds. Blackburn, E.H. & Greider, C.W.) 1–10 (Cold Spring Harbor Laboratory Press, 1995).

  2. Sabourin, M. & Zakian, V.A. ATM-like kinases and regulation of telomerase: lessons from yeast and mammals. Trends Cell Biol. 18, 337–346 (2008).

    Article  CAS  Google Scholar 

  3. Vega, L.R., Mateyak, M. & Zakian, V. Getting to the end: telomerase access in yeast and humans. Nat. Rev. Mol. Cell Biol. 4, 948–959 (2003).

    Article  CAS  Google Scholar 

  4. Marcand, S., Brevet, V. & Gilson, E. Progressive cis-inhibition of telomerase upon telomere elongation. EMBO J. 18, 3509–3519 (1999).

    Article  CAS  Google Scholar 

  5. Teixeira, M.T., Arneric, M., Sperisen, P. & Lingner, J. Telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states. Cell 117, 323–335 (2004).

    Article  CAS  Google Scholar 

  6. Hemann, M.T., Strong, M.A., Hao, L.Y. & Greider, C.W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107, 67–77 (2001).

    Article  CAS  Google Scholar 

  7. Chang, M., Arneric, M. & Lingner, J. Telomerase repeat addition processivity is increased at critically short telomeres in a Tel1-dependent manner in Saccharomyces cerevisiae. Genes Dev. 21, 2485–2494 (2007).

    Article  CAS  Google Scholar 

  8. Sabourin, M., Tuzon, C. & Zakian, V.A. Telomerase and Tel1p preferentially associate with short telomeres in S. cerevisiae. Mol. Cell 27, 550–561 (2007).

    Article  CAS  Google Scholar 

  9. Bianchi, A. & Shore, D. Increased association of telomerase with short telomeres in yeast. Genes Dev. 21, 1726–1730 (2007).

    Article  CAS  Google Scholar 

  10. Hector, R.E. et al. Tel1p preferentially associates with short telomeres to stimulate their elongation. Mol. Cell 27, 851–858 (2007).

    Article  CAS  Google Scholar 

  11. Gilson, E., Roberge, M., Giraldo, R., Rhodes, D. & Gasser, S.M. Distortion of the DNA double helix by RAP1 at silencers and multiple telomeric binding sites. J. Mol. Biol. 231, 293–310 (1993).

    Article  CAS  Google Scholar 

  12. Hirano, Y., Fukunaga, K. & Sugimoto, K. Rif1 and Rif2 inhibit localization of Tel1 to DNA ends. Mol. Cell 33, 312–322 (2009).

    Article  CAS  Google Scholar 

  13. Ritchie, K.B., Mallory, J.C. & Petes, T.D. Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 6065–6075 (1999).

    Article  CAS  Google Scholar 

  14. Arnerić, M. & Lingner, J. Tel1 kinase and subtelomere-bound Tbf1 mediate preferential elongation of short telomeres by telomerase in yeast. EMBO Rep. 8, 1080–1085 (2007).

    Article  Google Scholar 

  15. Nakada, D., Hirano, Y., Tanaka, Y. & Sugimoto, K. Role of the C terminus of Mec1 checkpoint kinase in its localization to sites of DNA damage. Mol. Biol. Cell 16, 5227–5235 (2005).

    Article  CAS  Google Scholar 

  16. Nakada, D., Matsumoto, K. & Sugimoto, K. ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Genes Dev. 17, 1957–1962 (2003).

    Article  CAS  Google Scholar 

  17. Craven, R.J., Greenwell, P.W., Dominska, M. & Petes, T.D. Regulation of genome stability by TEL1 and MEC1, yeast homologs of the mammalian ATM and ATR genes. Genetics 161, 493–507 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mallory, J.C. & Petes, T.D. Protein kinase activity of tel1p and mec1p, two Saccharomyces cerevisiae proteins related to the human ATM protein kinase. Proc. Natl. Acad. Sci. USA 97, 13749–13754 (2000).

    Article  CAS  Google Scholar 

  19. Voziyanov, Y., Lee, J., Whang, I. & Jayaram, M. Analyses of the first chemical step in Flp site-specific recombination: Synapsis may not be a pre-requisite for strand cleavage. J. Mol. Biol. 256, 720–735 (1996).

    Article  CAS  Google Scholar 

  20. Dubrana, K., van Attikum, H., Hediger, F. & Gasser, S.M. The processing of double-strand breaks and binding of single-strand-binding proteins RPA and Rad51 modulate the formation of ATR-kinase foci in yeast. J. Cell Sci. 120, 4209–4220 (2007).

    Article  CAS  Google Scholar 

  21. Hirano, Y. & Sugimoto, K. Cdc13 telomere capping decreases Mec1 association but does not affect Tel1 association with DNA ends. Mol. Biol. Cell 18, 2026–2036 (2007).

    Article  CAS  Google Scholar 

  22. Kondo, T., Wakayama, T., Naiki, T., Matsumoto, K. & Sugimoto, K. Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science 294, 867–870 (2001).

    Article  CAS  Google Scholar 

  23. Rouse, J. & Jackson, S.P. Lcd1p recruits Mec1p to DNA lesions in vitro and in vivo. Mol. Cell 9, 857–869 (2002).

    Article  CAS  Google Scholar 

  24. Bianchi, A., Negrini, S. & Shore, D. Delivery of yeast telomerase to a DNA break depends on the recruitment functions of Cdc13 and Est1. Mol. Cell 16, 139–146 (2004).

    Article  CAS  Google Scholar 

  25. Negrini, S., Ribaud, V., Bianchi, A. & Shore, D. DNA breaks are masked by multiple Rap1 binding in yeast: implications for telomere capping and telomerase regulation. Genes Dev. 21, 292–302 (2007).

    Article  CAS  Google Scholar 

  26. Oza, P., Jaspersen, S.L., Miele, A., Dekker, J. & Peterson, C.L. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev. 23, 912–927 (2009).

    Article  CAS  Google Scholar 

  27. Harrison, J.C. & Haber, J.E. Surviving the breakup: the DNA damage checkpoint. Annu. Rev. Genet. 40, 209–235 (2006).

    Article  CAS  Google Scholar 

  28. Iftode, C., Daniely, Y. & Borowiec, J.A. Replication protein A (RPA): the eukaryotic SSB. Crit. Rev. Biochem. Mol. Biol. 34, 141–180 (1999).

    Article  CAS  Google Scholar 

  29. Lisby, M., Barlow, J.H., Burgess, R.C. & Rothstein, R. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118, 699–713 (2004).

    Article  CAS  Google Scholar 

  30. Ira, G. et al. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431, 1011–1017 (2004).

    Article  CAS  Google Scholar 

  31. Wang, X. & Haber, J.E. Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair. PLoS Biol. 2, E21 (2004).

    Article  Google Scholar 

  32. Schramke, V. et al. RPA regulates telomerase action by providing Est1p access to chromosome ends. Nat. Genet. 36, 46–54 (2004).

    Article  CAS  Google Scholar 

  33. Foster, E.R. & Downs, J.A. Histone H2A phosphorylation in DNA double-strand break repair. FEBS J. 272, 3231–3240 (2005).

    Article  CAS  Google Scholar 

  34. Downs, J.A., Lowndes, N.F. & Jackson, S.P. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408, 1001–1004 (2000).

    Article  CAS  Google Scholar 

  35. Kim, J.A., Kruhlak, M., Dotiwala, F., Nussenzweig, A. & Haber, J.E. Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals. J. Cell Biol. 178, 209–218 (2007).

    Article  CAS  Google Scholar 

  36. Szilard, R.K. et al. Systematic identification of fragile sites via genome-wide location analysis of γ-H2AX. Nat. Struct. Mol. Biol. 17, 299–305 (2010).

    Article  CAS  Google Scholar 

  37. Shampay, J. & Blackburn, E.H. Generation of telomere-length heterogeneity in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 85, 534–538 (1988).

    Article  CAS  Google Scholar 

  38. Takata, H., Kanoh, Y., Gunge, N., Shirahige, K. & Matsuura, A. Reciprocal association of the budding yeast ATM-related proteins Tel1 and Mec1 with telomeres in vivo. Mol. Cell 14, 515–522 (2004).

    Article  CAS  Google Scholar 

  39. Takata, H., Tanaka, Y. & Matsuura, A. Late S phase-specific recruitment of Mre11 complex triggers hierarchical assembly of telomere replication proteins in Saccharomyces cerevisiae. Mol. Cell 17, 573–583 (2005).

    Article  CAS  Google Scholar 

  40. Smolka, M.B., Albuquerque, C.P., Chen, S.H. & Zhou, H. Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc. Natl. Acad. Sci. USA 104, 10364–10369 (2007).

    Article  CAS  Google Scholar 

  41. Levy, D.L. & Blackburn, E.H. Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length. Mol. Cell. Biol. 24, 10857–10867 (2004).

    Article  CAS  Google Scholar 

  42. Bonetti, D., Martina, M., Clerici, M., Lucchini, G. & Longhese, M.P. Multiple pathways regulate 3′ overhang generation at S. cerevisiae telomeres. Mol. Cell 35, 70–81 (2009).

    Article  CAS  Google Scholar 

  43. Mimitou, E.P. & Symington, L.S. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455, 770–774 (2008).

    Article  CAS  Google Scholar 

  44. Zhu, Z., Chung, W.H., Shim, E.Y., Lee, S.E. & Ira, G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134, 981–994 (2008).

    Article  CAS  Google Scholar 

  45. Taggart, A.K.P., Teng, S.-C. & Zakian, V.A. Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297, 1023–1026 (2002).

    Article  CAS  Google Scholar 

  46. Cortez, D., Guntuku, S., Qin, J. & Elledge, S.J. ATR and ATRIP: partners in checkpoint signaling. Science 294, 1713–1716 (2001).

    Article  CAS  Google Scholar 

  47. Zou, L. & Elledge, S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003).

    Article  CAS  Google Scholar 

  48. Michelson, R.J., Rosenstein, S. & Weinert, T. A telomeric repeat sequence adjacent to a DNA double-stranded break produces an anticheckpoint. Genes Dev. 19, 2546–2559 (2005).

    Article  CAS  Google Scholar 

  49. Verdun, R.E. & Karlseder, J. The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127, 709–720 (2006).

    Article  CAS  Google Scholar 

  50. Verdun, R.E., Crabbe, L., Haggblom, C. & Karlseder, J. Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol. Cell 20, 551–561 (2005).

    Article  CAS  Google Scholar 

  51. Viscardi, V., Bonetti, D., Cartagena-Lirola, H., Lucchini, G. & Longhese, M.P. MRX-dependent DNA damage response to short telomeres. Mol. Biol. Cell 18, 3047–3058 (2007).

    Article  CAS  Google Scholar 

  52. Sandell, L.L. & Zakian, V.A. Loss of a yeast telomere: arrest, recovery and chromosome loss. Cell 75, 729–739 (1993).

    Article  CAS  Google Scholar 

  53. Zhao, X., Muller, E.G. & Rothstein, R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2, 329–340 (1998).

    Article  CAS  Google Scholar 

  54. Lorenz, M.C. et al. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene 158, 113–117 (1995).

    Article  CAS  Google Scholar 

  55. Goudsouzian, L.K., Tuzon, C. & Zakian, V.A. S. cerevisiae Tel1p and Mre11p are required for normal levels of Est1p and Est2p telomere association. Mol. Cell 24, 603–610 (2006).

    Article  CAS  Google Scholar 

  56. Fisher, T.S., Taggart, A. & Zakian, V. Cell cycle-dependent regulation of yeast telomerase by Ku. Nat. Struct. Mol. Biol. 11, 1198–1205 (2004).

    Article  CAS  Google Scholar 

  57. Conrad, M.N., Wright, J.H., Wolf, A.J. & Zakian, V.A. RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell 63, 739–750 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Shore and A. Bianchi (University of Geneva) for strains and advice on the DSB assay, K. Runge for advice on telomere PCR, T. Petes (Duke University) for strains, M. Jayaram for discussions about FLP-induced DSBs and C. Webb and Y. Wu for comments on the manuscript. This work was supported by grants from the US National Institutes of Health (NIH; GM43265 to V.A.Z.), postdoctoral fellowships from the NIH (M.S.), Deutsche Forschungsgemeinschaft (K.P.) and NJCCR (K.P.), and predoctoral fellowships from NJCCR (J.A.P., J.S.M.) and NIH (J.S.M.).

Author information

Authors and Affiliations

Authors

Contributions

J.S.M. did the experiments in Figures 5 and 6, J.A.P. did the experiments in Figure 3, A.C. and M.S. did experiments in Figures 1, 2 and 4, and K.P. helped with analysis of H2A phosphorylation. V.A.Z. and all other authors participated in the design and interpretation of experiments and in the preparation of the manuscript.

Corresponding author

Correspondence to Virginia A Zakian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 1726 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGee, J., Phillips, J., Chan, A. et al. Reduced Rif2 and lack of Mec1 target short telomeres for elongation rather than double-strand break repair. Nat Struct Mol Biol 17, 1438–1445 (2010). https://doi.org/10.1038/nsmb.1947

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1947

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing