Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

H2A.Z nucleosomes enriched over active genes are homotypic

Abstract

Nucleosomes that contain the histone variant H2A.Z are enriched around transcriptional start sites, but the mechanistic basis for this enrichment is unknown. A single octameric nucleosome can contain two H2A.Z histones (homotypic) or one H2A.Z and one canonical H2A (heterotypic). To elucidate the function of H2A.Z, we generated high-resolution maps of homotypic and heterotypic Drosophila H2A.Z (H2Av) nucleosomes. Although homotypic and heterotypic H2A.Z nucleosomes mapped throughout most of the genome, homotypic nucleosomes were enriched and heterotypic nucleosomes were depleted downstream of active promoters and intron-exon junctions. The distribution of homotypic H2A.Z nucleosomes resembled that of classical active chromatin and showed evidence of disruption during transcriptional elongation. Both homotypic H2A.Z nucleosomes and classical active chromatin were depleted downstream of paused polymerases. Our results suggest that H2A.Z enrichment patterns result from intrinsic structural differences between heterotypic and homotypic H2A.Z nucleosomes that follow disruption during transcriptional elongation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Broad distribution of homotypic and heterotypic H2Av nucleosomes.
Figure 2: Homotypic H2Av nucleosomes are enriched downstream of gene promoters.
Figure 3: Homotypic H2Av nucleosomes are enriched downstream of intron-exon junctions and are low-salt soluble.
Figure 4: Depletion of homotypic H2Av nucleosomes at genes with stalled Pol II.
Figure 5: Low-salt extracted chromatin reveals distinctive features of RNA Pol II stalling.
Figure 6: Model for the generation of H2A.Z enrichment patterns.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Talbert, P.B. & Henikoff, S. Histone variants—ancient wrap artists of the epigenome. Nat. Rev. Mol. Cell Biol. 11, 264–275 (2010).

    Article  CAS  Google Scholar 

  2. Palmer, D., Snyder, L.A. & Blumenfeld, M. Drosophila nucleosomes contain an unusual histone-like protein. Proc. Natl. Acad. Sci. USA 77, 2671–2675 (1980).

    Article  CAS  Google Scholar 

  3. Wu, R.S., Tsai, S. & Bonner, W.M. Patterns of histone variant synthesis can distinguish G0 from G1 cells. Cell 31, 367–374 (1982).

    Article  CAS  Google Scholar 

  4. Zlatanova, J. & Thakar, A. H2A.Z: view from the top. Structure 16, 166–179 (2008).

    Article  CAS  Google Scholar 

  5. Liu, X., Li, B. & Gorovsky, M. Essential and nonessential histone H2A variants in Tetrahymena thermophila. Mol. Cell. Biol. 16, 4305–4311 (1996).

    Article  CAS  Google Scholar 

  6. Ridgway, P., Brown, K.D., Rangasamy, D., Svensson, U. & Tremethick, D.J. Unique residues on the H2A.Z containing nucleosome surface are important for Xenopus laevis development. J. Biol. Chem. 279, 43815–43820 (2004).

    Article  CAS  Google Scholar 

  7. Faast, R. et al. Histone variant H2A.Z is required for early mammalian development. Curr. Biol. 11, 1183–1187 (2001).

    Article  CAS  Google Scholar 

  8. van Daal, A. & Elgin, S.C. A histone variant, H2AvD, is essential in Drosophila melanogaster. Mol. Biol. Cell 3, 593–602 (1992).

    Article  CAS  Google Scholar 

  9. Kobor, M.S. et al. A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol. 2, E131 (2004).

    Article  Google Scholar 

  10. Krogan, N.J. et al. A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol. Cell 12, 1565–1576 (2003).

    Article  CAS  Google Scholar 

  11. Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).

    Article  CAS  Google Scholar 

  12. Mavrich, T.N. et al. Nucleosome organization in the Drosophila genome. Nature 453, 358–362 (2008).

    Article  CAS  Google Scholar 

  13. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  Google Scholar 

  14. Zilberman, D., Coleman-Derr, D., Ballinger, T. & Henikoff, S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456, 125–129 (2008).

    Article  CAS  Google Scholar 

  15. Lantermann, A.B. et al. Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat. Struct. Mol. Biol. 17, 251–257 (2010).

    Article  CAS  Google Scholar 

  16. Suto, R.K., Clarkson, M.J., Tremethick, D.J. & Luger, K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat. Struct. Biol. 7, 1121–1124 (2000).

    Article  CAS  Google Scholar 

  17. Chakravarthy, S., Bao, Y., Roberts, V.A., Tremethick, D. & Luger, K. Structural characterization of histone H2A variants. Cold Spring Harb. Symp. Quant. Biol. 69, 227–234 (2004).

    Article  CAS  Google Scholar 

  18. Viens, A. et al. Analysis of human histone H2AZ deposition in vivo argues against its direct role in epigenetic templating mechanisms. Mol. Cell. Biol. 26, 5325–5335 (2006).

    Article  CAS  Google Scholar 

  19. Park, Y.J., Dyer, P.N., Tremethick, D.J. & Luger, K. A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome. J. Biol. Chem. 279, 24274–24282 (2004).

    Article  CAS  Google Scholar 

  20. Li, W., Nagaraja, S., Delcuve, G.P., Hendzel, M.J. & Davie, J.R. Effects of histone acetylation, ubiquitination and variants on nucleosome stability. Biochem. J. 296, 737–744 (1993).

    Article  CAS  Google Scholar 

  21. Thambirajah, A.A. et al. H2A.Z stabilizes chromatin in a way that is dependent on core histone acetylation. J. Biol. Chem. 281, 20036–20044 (2006).

    Article  CAS  Google Scholar 

  22. Thakar, A., Gupta, P., McAllister, W.T. & Zlatanova, J. Histone variant H2A.Z inhibits transcription in reconstituted nucleosomes. Biochemistry 49, 4018–4026 (2010).

    Article  CAS  Google Scholar 

  23. Ishibashi, T. et al. Acetylation of vertebrate H2A.Z and its effect on the structure of the nucleosome. Biochemistry 48, 5007–5017 (2009).

    Article  CAS  Google Scholar 

  24. Malik, H.S. & Henikoff, S. Phylogenomics of the nucleosome. Nat. Struct. Biol. 10, 882–891 (2003).

    Article  CAS  Google Scholar 

  25. Jin, C. & Felsenfeld, G. Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev. 21, 1519–1529 (2007).

    Article  CAS  Google Scholar 

  26. Desai, N.A. & Shankar, V. Single-strand-specific nucleases. FEMS Microbiol. Rev. 26, 457–491 (2003).

    Article  CAS  Google Scholar 

  27. Buratowski, S., Hahn, S., Guarente, L. & Sharp, P.A. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56, 549–561 (1989).

    Article  CAS  Google Scholar 

  28. Selby, C.P., Drapkin, R., Reinberg, D. & Sancar, A. RNA polymerase II stalled at a thymine dimer: Footprint and effect on excision repair. Nucleic Acids Res. 25, 787–793 (1997).

    Article  CAS  Google Scholar 

  29. Henikoff, S., Henikoff, J.G., Sakai, A., Loeb, G.B. & Ahmad, K. Genome-wide profiling of salt fractions maps physical properties of chromatin. Genome Res. 19, 460–469 (2009).

    Article  CAS  Google Scholar 

  30. Palmer, D., Snyder, L.A. & Blumenfeld, M. Drosophila nucleosomes contain an unusual histone-like protein. Proc. Natl. Acad. Sci. USA 77, 2671–2675 (1980).

    Article  CAS  Google Scholar 

  31. Schwartz, S., Meshorer, E. & Ast, G. Chromatin organization marks exon-intron structure. Nat. Struct. Mol. Biol. 16, 990–995 (2009).

    Article  CAS  Google Scholar 

  32. Sims, R.J. et al. Recognition of trimethylated histone h3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol. Cell 28, 665–676 (2007).

    Article  CAS  Google Scholar 

  33. Tilgner, H. et al. Nucleosome positioning as a determinant of exon recognition. Nat. Struct. Mol. Biol. 16, 996–1001 (2009).

    Article  CAS  Google Scholar 

  34. Rocha, E., Davie, J.R., van Holde, K.E. & Weintraub, H. Differential salt fractionation of active and inactive genomic domains in chicken erythrocyte. J. Biol. Chem. 259, 8558–8563 (1984).

    CAS  PubMed  Google Scholar 

  35. Rougvie, A.E. & Lis, J.T. Postinitiation transcriptional control in Drosophila melanogaster. Mol. Cell 10, 6041–6045 (1990).

    Article  CAS  Google Scholar 

  36. Muse, G.W. et al. RNA polymerase is poised for activation across the genome. Nat. Genet. 39, 1507–1511 (2007).

    Article  CAS  Google Scholar 

  37. Rahl, P.B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

    Article  CAS  Google Scholar 

  38. Henikoff, S. Labile H3.3+H2A.Z nucleosomes mark 'nucleosome-free regions'. Nat. Genet. 41, 865–866 (2009).

    Article  CAS  Google Scholar 

  39. Jin, C. et al. H3.3/H2A.Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions in the human genome. Nat. Genet. 41, 941–945 (2009).

    Article  CAS  Google Scholar 

  40. Kireeva, M.L. et al. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol. Cell 9, 541–552 (2002).

    Article  CAS  Google Scholar 

  41. Goldman, J.A., Garlick, J.D. & Kingston, R.E. Chromatin remodeling by imitation switch (ISWI) class ATP-dependent remodelers is stimulated by histone variant H2A.Z. J. Biol. Chem. 285, 4645–4651 (2010).

    Article  CAS  Google Scholar 

  42. van Holde, K.E., Lohr, D.E. & Robert, C. What happens to nucleosomes during transcription? J. Biol. Chem. 267, 2837–2840 (1992).

    CAS  Google Scholar 

  43. Kouzine, F., Sanford, S., Elisha-Feil, Z. & Levens, D. The functional response of upstream DNA to dynamic supercoiling in vivo. Nat. Struct. Mol. Biol. 15, 146–154 (2008).

    Article  CAS  Google Scholar 

  44. Bancaud, A. et al. Nucleosome chiral transition under positive torsional stress in single chromatin fibers. Mol. Cell 27, 135–147 (2007).

    Article  CAS  Google Scholar 

  45. Wang, Z. & Droge, P. Differential control of transcription-induced and overall DNA supercoiling by eukaryotic topoisomerases in vitro. EMBO J. 15, 581–589 (1996).

    Article  CAS  Google Scholar 

  46. Galburt, E.A. et al. Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. Nature 446, 820–823 (2007).

    Article  CAS  Google Scholar 

  47. Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007).

    Article  CAS  Google Scholar 

  48. Fernandez-Capetillo, O., Lee, A., Nussenzweig, M. & Nussenzweig, A. H2AX: the histone guardian of the genome. DNA Repair (Amst.) 3, 959–967 (2004).

    Article  CAS  Google Scholar 

  49. Madigan, J.P., Chotkowski, H.L. & Glaser, R.L. DNA double-strand break-induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation-induced apoptosis. Nucleic Acids Res. 30, 3698–3705 (2002).

    Article  CAS  Google Scholar 

  50. Mito, Y., Henikoff, J.G. & Henikoff, S. Genome-scale profiling of histone H3.3 replacement patterns. Nat. Genet. 37, 1090–1097 (2005).

    Article  CAS  Google Scholar 

  51. Henikoff, S., Henikoff, J.G., Sakai, A., Loeb, G.B. & Ahmad, K. Genome-wide profiling of salt fractions maps physical properties of chromatin. Genome Res. 19, 460–469 (2009).

    Article  CAS  Google Scholar 

  52. Bryson, T.D., Weber, C.M. & Henikoff, S. Baculovirus-encoded protein expression for epigenomic profiling in Drosophila cells. Fly (Austin) 4, 258–265 (2010).

    Article  CAS  Google Scholar 

  53. Gehring, M., Bubb, K. & Henikoff, S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324, 1447–1451 (2009).

    Article  CAS  Google Scholar 

  54. Moses, A.M. et al. Large-scale turnover of functional transcription factor binding sites in Drosophila. PLOS Comput. Biol. 2, e130 (2006).

    Article  Google Scholar 

  55. Schwartz, Y.B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat. Genet. 38, 700–705 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Loos for participating in early stages of this study, A. Marty (Hutchinson Center Shared Genomics Resource) for Illumina sequencing, E. Greene for help with Solexa analysis, R. Glaser (Wadsworth Center, New York State Department of Health) for the H2Av antibody and M. Conerly, R. Deal, P. Talbert and E. Wolff for comments. This work was supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

C.M.W. performed the experiments, J.G.H. did the analysis, S.H. supervised the work and C.M.W. and S.H. wrote the paper.

Corresponding author

Correspondence to Steven Henikoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Table 1 (PDF 1938 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, C., Henikoff, J. & Henikoff, S. H2A.Z nucleosomes enriched over active genes are homotypic. Nat Struct Mol Biol 17, 1500–1507 (2010). https://doi.org/10.1038/nsmb.1926

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1926

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing