Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Chemical-genomic dissection of the CTD code

Abstract

Sequential modifications of the RNA polymerase II (Pol II) C-terminal domain (CTD) coordinate the stage-specific association and release of cellular machines during transcription. Here we examine the genome-wide distributions of the 'early' (phospho-Ser5 (Ser5-P)), 'mid' (Ser7-P) and 'late' (Ser2-P) CTD marks. We identify gene class–specific patterns and find widespread co-occurrence of the CTD marks. Contrary to its role in 3′-processing of noncoding RNA, the Ser7-P marks are placed early and retained until transcription termination at all Pol II–dependent genes. Chemical-genomic analysis reveals that the promoter-distal Ser7-P marks are not remnants of early phosphorylation but are placed anew by the CTD kinase Bur1. Consistent with the ability of Bur1 to facilitate transcription elongation and suppress cryptic transcription, high levels of Ser7-P are observed at highly transcribed genes. We propose that Ser7-P could facilitate elongation and suppress cryptic transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pol II and CTD phosphorylation profiles.
Figure 2: Genome-wide Pol II and CTD phosphorylation profiles.
Figure 3: CTD phosphorylation profile for protein-coding and noncoding genes.
Figure 4: Small-molecule inhibition of CTD phosphorylation.
Figure 5: Promoter-distal Ser7-P marks are not remnants of promoter-proximal Kin28 phosphorylation.
Figure 6: Bur1 kinase directly phosphorylates Ser7.

Similar content being viewed by others

Accession codes

Accessions

ArrayExpress

References

  1. Phatnani, H.P. & Greenleaf, A.L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936 (2006).

    Article  CAS  Google Scholar 

  2. Buratowski, S. The CTD code. Nat. Struct. Biol. 10, 679–680 (2003).

    Article  CAS  Google Scholar 

  3. Corden, J.L. Transcription: seven ups the code. Science 318, 1735–1736 (2007).

    Article  CAS  Google Scholar 

  4. Perales, R. & Bentley, D. “Cotranscriptionality”: the transcription elongation complex as a nexus for nuclear transactions. Mol. Cell 36, 178–191 (2009).

    Article  CAS  Google Scholar 

  5. Lee, T.I. & Young, R. Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34, 77–137 (2000).

    Article  CAS  Google Scholar 

  6. Myers, L.C. & Kornberg, R.D. Mediator of transcriptional regulation. Annu. Rev. Biochem. 69, 729–749 (2000).

    Article  CAS  Google Scholar 

  7. Sims, R.J. III, Belotserkovskaya, R. & Reinberg, D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 18, 2437–2468 (2004).

    Article  CAS  Google Scholar 

  8. Liu, Y. et al. Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex. Mol. Cell. Biol. 24, 1721–1735 (2004).

    Article  CAS  Google Scholar 

  9. Ansari, A.Z., Ogirala, A. & Ptashne, M. Transcriptional activating regions target attached substrates to a cyclin-dependent kinase. Proc. Natl. Acad. Sci. USA 102, 2346–2349 (2005).

    Article  CAS  Google Scholar 

  10. Riedl, T. & Egly, J.M. Phosphorylation in transcription: the CTD and more. Gene Expr. 9, 3–13 (2000).

    Article  CAS  Google Scholar 

  11. Max, T., Sogaard, M. & Svejstrup, J. Hyperphosphorylation of the C-terminal repeat domain of RNA polymerase II facilitates dissociation of its complex with mediator. J. Biol. Chem. 282, 14113–14120 (2007).

    Article  Google Scholar 

  12. Schroeder, S.C., Schwer, B., Shuman, S. & Bentley, D. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev. 14, 2435–2440 (2000).

    Article  CAS  Google Scholar 

  13. Komarnitsky, P., Cho, E.J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000).

    Article  CAS  Google Scholar 

  14. Ng, H.H., Robert, F., Young, R.A. & Struhl, K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 11, 709–719 (2003).

    Article  CAS  Google Scholar 

  15. Krogan, N.J. et al. Methylation of Histone H3 by Set2 in Saccharomyces cerevisiae Is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 23, 4207–4218 (2003).

    Article  CAS  Google Scholar 

  16. Carrozza, M.J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).

    Article  CAS  Google Scholar 

  17. Mosley, A.L. et al. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. Mol. Cell 34, 168–178 (2009).

    Article  CAS  Google Scholar 

  18. Brès, V., Yoh, S. & Jones, K. The multi-tasking P-TEFb complex. Curr. Opin. Cell Biol. 20, 334–340 (2008).

    Article  Google Scholar 

  19. Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009).

    Article  CAS  Google Scholar 

  20. Kornblihtt, A.R., De La Mata, M., Fededa, J., Munoz, M. & Nogues, G. Multiple links between transcription and splicing. RNA 10, 1489–1498 (2004).

    Article  CAS  Google Scholar 

  21. Wood, A. & Shilatifard, A. Bur1/Bur2 and the Ctk complex in yeast: the split personality of mammalian P-TEFb. Cell Cycle 5, 1066–1068 (2006).

    Article  CAS  Google Scholar 

  22. Liu, Y. et al. Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Mol. Cell. Biol. 29, 4852–4863 (2009).

    Article  CAS  Google Scholar 

  23. Zhou, K., Kuo, W., Fillingham, J. & Greenblatt, J. Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Proc. Natl. Acad. Sci. USA 106, 6956–6961 (2009).

    Article  CAS  Google Scholar 

  24. Chu, Y., Simic, R., Warner, M., Arndt, K. & Prelich, G. Regulation of histone modification and cryptic transcription by the Bur1 and Paf1 complexes. EMBO J. 26, 4646–4656 (2007).

    Article  CAS  Google Scholar 

  25. Keogh, M.C., Podolny, V. & Buratowski, S. Bur1 kinase is required for efficient transcription elongation by RNA polymerase II. Mol. Cell. Biol. 23, 7005–7018 (2003).

    Article  CAS  Google Scholar 

  26. Proudfoot, N.J., Furger, A. & Dye, M.J. Integrating mRNA processing with transcription. Cell 108, 501–512 (2002).

    Article  CAS  Google Scholar 

  27. Licatalosi, D.D. et al. Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol. Cell 9, 1101–1111 (2002).

    Article  CAS  Google Scholar 

  28. Ahn, S.H., Kim, M. & Buratowski, S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol. Cell 13, 67–76 (2004).

    Article  CAS  Google Scholar 

  29. Cho, E.J., Kobor, M.S., Kim, M., Greenblatt, J. & Buratowski, S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15, 3319–3329 (2001).

    Article  CAS  Google Scholar 

  30. Krishnamurthy, S., He, X., Reyes-Reyes, M., Moore, C. & Hampsey, M. Ssu72 is an RNA polymerase II CTD phosphatase. Mol. Cell 14, 387–394 (2004).

    Article  CAS  Google Scholar 

  31. Steinmetz, E.J., Conrad, N., Brow, D. & Corden, J. RNA-binding protein Nrd1 directs poly (A)-independent 3′-end formation of RNA polymerase II transcripts. Nature 413, 327–331 (2001).

    Article  CAS  Google Scholar 

  32. Egloff, S. et al. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 318, 1777–1779 (2007).

    Article  CAS  Google Scholar 

  33. Baillat, D. et al. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123, 265–276 (2005).

    Article  CAS  Google Scholar 

  34. Chapman, R.D. et al. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318, 1780–1782 (2007).

    Article  CAS  Google Scholar 

  35. Stiller, J.W., Mcconaughy, B. & Hall, B. Evolutionary complementation for polymerase II CTD function. Yeast 16, 57–64 (2000).

    Article  CAS  Google Scholar 

  36. Egloff, S. & Murphy, S. Cracking the RNA polymerase II CTD code. Trends Genet. 24, 280–288 (2008).

    Article  CAS  Google Scholar 

  37. Jenuwein, T. & Allis, C. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  Google Scholar 

  38. Gomes, N.P. et al. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Genes Dev. 20, 601–612 (2006).

    Article  CAS  Google Scholar 

  39. Medlin, J. et al. P-TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes. EMBO J. 24, 4154–4165 (2005).

    Article  CAS  Google Scholar 

  40. Kanin, E.I. et al. Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis. Proc. Natl. Acad. Sci. USA 104, 5812–5817 (2007).

    Article  CAS  Google Scholar 

  41. Lee, K.M. et al. Impairment of the TFIIH-associated CDK-activating kinase selectively affects cell cycle-regulated gene expression in fission yeast. Mol. Biol. Cell 16, 2734–2745 (2005).

    Article  CAS  Google Scholar 

  42. Serizawa, H., Conaway, J. & Conaway, R. Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription. Nature 363, 371–374 (1993).

    Article  CAS  Google Scholar 

  43. Akhtar, M.S. et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell 34, 387–393 (2009).

    Article  CAS  Google Scholar 

  44. Kim, M., Suh, H., Cho, E. & Buratowski, S. Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7. J. Biol. Chem. 284, 26421–26426 (2009).

    Article  CAS  Google Scholar 

  45. Glover-Cutter, K. et al. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol. Cell. Biol. 29, 5455–5464 (2009).

    Article  CAS  Google Scholar 

  46. Patturajan, M., Conrad, N., Bregman, D. & Corden, J. Yeast carboxyl-terminal domain kinase I positively and negatively regulates RNA polymerase II carboxyl-terminal domain phosphorylation. J. Biol. Chem. 274, 27823–27828 (1999).

    Article  CAS  Google Scholar 

  47. Viladevall, L. et al. TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast. Mol. Cell 33, 738–751 (2009).

    Article  CAS  Google Scholar 

  48. Qiu, H., Hu, C. & Hinnebusch, A. Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol. Cell 33, 752–762 (2009).

    Article  CAS  Google Scholar 

  49. Steinmetz, E.J. et al. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol. Cell 24, 735–746 (2006).

    Article  CAS  Google Scholar 

  50. Neil, H. et al. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457, 1038–1042 (2009).

    Article  CAS  Google Scholar 

  51. Xu, Z. et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–1037 (2009).

    Article  CAS  Google Scholar 

  52. Holstege, F.C. & Young, R. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  Google Scholar 

  53. Venters, B.J. & Pugh, B. A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome. Genome Res. 19, 360–371 (2009).

    Article  CAS  Google Scholar 

  54. Knight, Z.A. & Shokat, K.M. Features of selective kinase inhibitors. Chem. Biol. 12, 621–637 (2005).

    Article  CAS  Google Scholar 

  55. Ahn, S.H., Keogh, M. & Buratowski, S. Ctk1 promotes dissociation of basal transcription factors from elongating RNA polymerase II EMBO Open. EMBO J. 28, 205–212 (2009).

    Article  CAS  Google Scholar 

  56. Arigo, J.T., Eyler, D., Carroll, K. & Corden, J. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol. Cell 23, 841–851 (2006).

    Article  CAS  Google Scholar 

  57. Thiebaut, M., Kisseleva-Romanova, E., Rougemaille, M., Boulay, J. & Libri, D. Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol. Cell 23, 853–864 (2006).

    Article  CAS  Google Scholar 

  58. Kim, M. et al. Distinct pathways for snoRNA and mRNA termination. Mol. Cell 24, 723–734 (2006).

    Article  CAS  Google Scholar 

  59. Sheldon, K.E., Mauger, D. & Arndt, K. A requirement for the Saccharomyces cerevisiae Paf1 complex in snoRNA 3′ end formation. Mol. Cell 20, 225–236 (2005).

    Article  CAS  Google Scholar 

  60. Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39, 1235–1244 (2007).

    Article  CAS  Google Scholar 

  61. Kanin, E.I. et al. Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis. Proc. Natl. Acad. Sci. USA 104, 5812–5817 (2007).

    Article  CAS  Google Scholar 

  62. Rousseeuw, P. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).

    Article  Google Scholar 

  63. Harbison, C.T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004).

    Article  CAS  Google Scholar 

  64. Ansari, A.Z., Ogirala, A. & Ptashne, M. Transcriptional activating regions target attached substrates to a cyclin-dependent kinase. Proc. Natl. Acad. Sci. USA 102, 2346–2349 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Hahn (Fred Hutchinson Cancer Research Center) for sharing strains before publication and for helpful discussions, J. Nau and A. Nett for optimizing strains, E. Kanin and A. Leaf for exploratory experiments, D. Burgess and N. Thompson (Univ. of Wisconsin-Madison) for the gift of Pol II antibody (RPB3) and C. Zhang (Univ. of California, San Francisco) for providing small-molecule inhibitors and for their advice on the kinase inhibition experiments. We also gratefully acknowledge the support of the US National Science Foundation (MCB 07147), W.M. Keck, Shaw Scholar and Vilas Associate awards (to A.Z.A.). J.R.T. and J.B.R.-M. were supported by a US National Human Genome Research Institute training grant to the Genomic Sciences Training Program (5T32HG002760). D.E. was supported by Deutsche Forschungsgemeinschaft SFB/TR5 and SFB684 and S.K. was supported by HG03747 (US National Institutes of Health). M.H. was funded by a Boehringer Ingelheim Fonds travel grant.

Author information

Authors and Affiliations

Authors

Contributions

J.R.T., D.W.Z. and B.E.W. performed the ChIP-chip experiments in the JTY1 and Kin28as + Srb10as strains; J.B.R.-M. performed the ChIP-chip experiments with the BY4743 and Bur1as strains; J.R.T. analyzed the ChIP-chip data for all the experiments; M.S.A. and D.W.Z. performed the kinase assays; X.L. and S.K. assisted with data analysis; M.H. performed the ELISA assays; A.Z.A., R.D.C. and D.E. planned and analyzed the Ser7-P experiments; K.S. provided the unpublished small-molecule inhibitors and assisted in the planning of the kinase inhibition experiments; J.R.T., D.W.Z., J.B.R.-M. and A.Z.A. wrote the manuscript; all authors commented on the manuscript.

Corresponding author

Correspondence to Aseem Z Ansari.

Ethics declarations

Competing interests

A.Z.A. is the proprietor of VistaMotif.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–10 and Supplementary Table 1 (PDF 6160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tietjen, J., Zhang, D., Rodríguez-Molina, J. et al. Chemical-genomic dissection of the CTD code. Nat Struct Mol Biol 17, 1154–1161 (2010). https://doi.org/10.1038/nsmb.1900

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1900

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing