Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The exon junction complex differentially marks spliced junctions

Abstract

The exon junction complex (EJC), which is deposited onto mRNAs as a consequence of splicing, is involved in multiple post-transcriptional events in metazoa. Here, using Drosophila melanogaster cells, we show that only some introns trigger EJC-dependent nonsense-mediated mRNA decay and that EJC association with particular spliced junctions depends on RNA cis-acting sequences. This study provides the first evidence to our knowledge that EJC deposition is not constitutive but instead is a regulated process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specific 3′ UTRs confer splicing- and EJC-dependent NMD sensitivity upon reporter mRNAs.
Figure 2: EJCs assemble on specific spliced mRNAs.
Figure 3: RNA cis-acting elements specify EJC-dependent NMD.

Similar content being viewed by others

References

  1. Le Hir, H. & Andersen, G.R. Curr. Opin. Struct. Biol. 18, 112–119 (2008).

    Article  CAS  Google Scholar 

  2. Le Hir, H., Izaurralde, E., Maquat, L.E. & Moore, M.J. EMBO J. 19, 6860–6869 (2000).

    Article  CAS  Google Scholar 

  3. Moore, M.J. & Proudfoot, N.J. Cell 136, 688–700 (2009).

    Article  CAS  Google Scholar 

  4. Behm-Ansmant, I. et al. FEBS Lett. 581, 2845–2853 (2007).

    Article  CAS  Google Scholar 

  5. Brogna, S. & Wen, J. Nat. Struct. Mol. Biol. 16, 107–113 (2009).

    Article  CAS  Google Scholar 

  6. Isken, O. & Maquat, L.E. Nat. Rev. Genet. 9, 699–712 (2008).

    Article  CAS  Google Scholar 

  7. Rebbapragada, I. & Lykke-Andersen, J. Curr. Opin. Cell Biol. 21, 394–402 (2009).

    Article  CAS  Google Scholar 

  8. Mendell, J.T., Sharifi, N.A., Meyers, J.L., Martinez-Murillo, F. & Dietz, H.C. Nat. Genet. 36, 1073–1078 (2004).

    Article  CAS  Google Scholar 

  9. Rehwinkel, J., Letunic, I., Raes, J., Bork, P. & Izaurralde, E. RNA 11, 1530–1544 (2005).

    Article  CAS  Google Scholar 

  10. Kerenyi, Z. et al. EMBO J. 27, 1585–1595 (2008).

    Article  CAS  Google Scholar 

  11. Wittkopp, N. et al. Mol. Cell. Biol. 29, 3517–3528 (2009).

    Article  CAS  Google Scholar 

  12. Zhang, J., Sun, X., Qian, Y., LaDuca, J.P. & Maquat, L.E. Mol. Cell. Biol. 18, 5272–5283 (1998).

    Article  CAS  Google Scholar 

  13. Gehring, N.H., Neu-Yilik, G., Schell, T., Hentze, M.W. & Kulozik, A.E. Mol. Cell 11, 939–949 (2003).

    Article  CAS  Google Scholar 

  14. Chamieh, H., Ballut, L., Bonneau, F. & Le Hir, H. Nat. Struct. Mol. Biol. 15, 85–93 (2008).

    Article  CAS  Google Scholar 

  15. Kashima, I. et al. Genes Dev. 20, 355–367 (2006).

    Article  CAS  Google Scholar 

  16. Herold, N. et al. Mol. Cell. Biol. 29, 281–301 (2009).

    Article  CAS  Google Scholar 

  17. Gatfield, D., Unterholzner, L., Ciccarelli, F.D., Bork, P. & Izaurralde, E. EMBO J. 22, 3960–3970 (2003).

    Article  CAS  Google Scholar 

  18. Giorgi, C. & Moore, M.J. Semin. Cell Dev. Biol. 18, 186–193 (2007).

    Article  CAS  Google Scholar 

  19. Hachet, O. & Ephrussi, A. Nature 428, 959–963 (2004).

    Article  CAS  Google Scholar 

  20. Budiman, M.E. et al. Mol. Cell 35, 479–489 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Conti (Max Planck Institute of Biochemistry) and E. Izaurralde (Max Planck Institute for Developmental Biology) for fly cDNAs, A. Echard (Institut Curie) for S2 cells, J. Montagne (Centre National de la Recherche Scientifique) and D. St. Johnston (Univ. of Cambridge) for antibodies, B. Séraphin and all members of our laboratories for helpful advice and discussions and D. Rio, J. Conaway, R. Krumlauf and E. Izaurralde for carefully reading the manuscript and for helpful comments. This work was supported by the Centre National de la Recherche Scientifique (H.L.H.), l'Agence Nationale de Recherche (H.L.H.), the Action Thématique et Incitative sur Programme (ATIP) of the Research Ministry (H.L.H.) and the Stowers Institute for Medical Research (M.B.). J.S. is the recipient of a fellowship from the Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Contributions

J.S., I.B., S.H. and N.H. cloned reporter constructs and performed luciferase assays and RNA analysis; N.H. established the cell line expressing the tagged EJC core proteins and performed RNP immunoprecipitations; M.B. and H.L.H. provided resources and conceived and directed the project; J.S., M.B. and H.L.H. wrote the paper.

Corresponding authors

Correspondence to Marco Blanchette or Hervé Le Hir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Methods (PDF 3986 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saulière, J., Haque, N., Harms, S. et al. The exon junction complex differentially marks spliced junctions. Nat Struct Mol Biol 17, 1269–1271 (2010). https://doi.org/10.1038/nsmb.1890

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1890

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing