Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis

Abstract

The pluripotency-promoting proteins Lin28a and Lin28b act as post-transcriptional repressors of let-7 miRNA biogenesis in undifferentiated embryonic stem cells. The levels of mature let-7a differ substantially in cells lacking Lin28 expression, indicating the existence of additional mechanism(s) of post-transcriptional regulation. Here, we present evidence supporting a role for heteronuclear ribonucleoprotein A1 (hnRNP A1) as a negative regulator of let-7a. HnRNP A1 binds the conserved terminal loop of pri-let-7a-1 and inhibits its processing by Drosha. Levels of mature let-7a negatively correlate with hnRNP A1 levels in somatic cell lines. Furthermore, hnRNP A1 depletion increased pri-let-7a-1 processing by cell extracts, whereas its ectopic expression decreased let-7a production in vivo. Finally, hnRNP A1 binding to let-7a interferes with the binding of KSRP, which is known to promote let-7a biogenesis. We propose that hnRNP A1 and KSRP have antagonistic roles in the post-transcriptional regulation of let-7a expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HnRNP A1 specifically binds to the terminal loop of pri-let-7a-1.
Figure 2: Levels of mature let-7a correlate negatively with the levels of hnRNP A1 in human cells.
Figure 3: Ectopic expression of hnRNP A1 in HeLa and Astrocytoma 1321N1 cells reduces the levels of endogenous mature let-7a.
Figure 4: HnRNP A1 negatively regulates the Drosha-mediated processing of let-7a-1.
Figure 5: HnRNP A1 binds and remodels the terminal loop of pri-let-7a-1.
Figure 6: KSRP binds to the terminal loop of pri-let-7a-1.
Figure 7: KSRP and hnRNP A1 compete for binding to the pri-let-7a-1 terminal loop.
Figure 8: Cartoon displaying the antagonism of KSRP and hnRNP A1 in the post-transcriptional regulation of let-7a processing.

Similar content being viewed by others

References

  1. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

  2. Kumar, M.S., Lu, J., Mercer, K.L., Golub, T.R. & Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet. 39, 673–677 (2007).

    Article  CAS  Google Scholar 

  3. Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027 (2004).

    Article  CAS  Google Scholar 

  4. Zeng, Y., Yi, R. & Cullen, B.R. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 24, 138–148 (2005).

    Article  CAS  Google Scholar 

  5. Kim, V.N., Han, J. & Siomi, M.C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139 (2009).

    Article  CAS  Google Scholar 

  6. Shiohama, A., Sasaki, T., Noda, S., Minoshima, S. & Shimizu, N. Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome chromosomal region. Biochem. Biophys. Res. Commun. 304, 184–190 (2003).

    Article  CAS  Google Scholar 

  7. Landthaler, M., Yalcin, A. & Tuschl, T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol. 14, 2162–2167 (2004).

    Article  CAS  Google Scholar 

  8. Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F. & Hannon, G.J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235 (2004).

    Article  CAS  Google Scholar 

  9. Gregory, R.I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).

    Article  CAS  Google Scholar 

  10. Kim, Y.K. & Kim, V.N. Processing of intronic microRNAs. EMBO J. 26, 775–783 (2007).

    Article  CAS  Google Scholar 

  11. Morlando, M. et al. Primary microRNA transcripts are processed co-transcriptionally. Nat. Struct. Mol. Biol. 15, 902–909 (2008).

    Article  CAS  Google Scholar 

  12. Pawlicki, J.M. & Steitz, J.A. Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. J. Cell Biol. 182, 61–76 (2008).

    Article  CAS  Google Scholar 

  13. Winter, J., Jung, S., Keller, S., Gregory, R.I. & Diederichs, S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol. 11, 228–234 (2009).

    Article  CAS  Google Scholar 

  14. Thomson, J.M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 20, 2202–2207 (2006).

    Article  CAS  Google Scholar 

  15. Fukuda, T. et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat. Cell Biol. 9, 604–611 (2007).

    Article  CAS  Google Scholar 

  16. Yamagata, K. et al. Maturation of microRNA is hormonally regulated by a nuclear receptor. Mol. Cell 36, 340–347 (2009).

    Article  CAS  Google Scholar 

  17. Davis, B.N., Hilyard, A.C., Lagna, G. & Hata, A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454, 56–61 (2008).

    Article  CAS  Google Scholar 

  18. Obernosterer, G., Leuschner, P.J., Alenius, M. & Martinez, J. Post-transcriptional regulation of microRNA expression. RNA 12, 1161–1167 (2006).

    Article  CAS  Google Scholar 

  19. Roush, S. & Slack, F.J. The let-7 family of microRNAs. Trends Cell Biol. 18, 505–516 (2008).

    Article  CAS  Google Scholar 

  20. Viswanathan, S.R., Daley, G.Q. & Gregory, R.I. Selective blockade of microRNA processing by Lin28. Science 320, 97–100 (2008).

    Article  CAS  Google Scholar 

  21. Newman, M.A., Thomson, J.M. & Hammond, S.M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539–1549 (2008).

    Article  CAS  Google Scholar 

  22. Piskounova, E. et al. Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J. Biol. Chem. 283, 21310–21314 (2008).

    Article  CAS  Google Scholar 

  23. Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol. Cell 32, 276–284 (2008).

    Article  CAS  Google Scholar 

  24. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat. Cell Biol. 10, 987–993 (2008).

    Article  CAS  Google Scholar 

  25. Cartegni, L., Chew, S.L. & Krainer, A.R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat. Rev. Genet. 3, 285–298 (2002).

    Article  CAS  Google Scholar 

  26. Chen, M. & Manley, J.L. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat. Rev. Mol. Cell Biol. 10, 741–754 (2009).

    Article  CAS  Google Scholar 

  27. Guil, S. & Cáceres, J.F. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat. Struct. Mol. Biol. 14, 591–596 (2007).

    Article  CAS  Google Scholar 

  28. Michlewski, G., Guil, S., Semple, C.A. & Cáceres, J.F. Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol. Cell 32, 383–393 (2008).

    Article  CAS  Google Scholar 

  29. Burd, C.G. & Dreyfuss, G. RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. EMBO J. 13, 1197–1204 (1994).

    Article  CAS  Google Scholar 

  30. Min, H., Turck, C.W., Nikolic, J.M. & Black, D.L. A new regulatory protein, KSRP, mediates exon inclusion through an intronic splicing enhancer. Genes Dev. 11, 1023–1036 (1997).

    Article  CAS  Google Scholar 

  31. Ruggiero, T. et al. LPS induces KH-type splicing regulatory protein-dependent processing of microRNA-155 precursors in macrophages. FASEB J. 23, 2898–2908 (2009).

    Article  CAS  Google Scholar 

  32. Trabucchi, M. et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459, 1010–1014 (2009).

    Article  CAS  Google Scholar 

  33. Dreyfuss, G., Matunis, M.J., Pinol-Roma, S. & Burd, C.G. hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62, 289–321 (1993).

    Article  CAS  Google Scholar 

  34. Shamoo, Y., Krueger, U., Rice, L.M., Williams, K.R. & Steitz, T.A. Crystal structure of the two RNA binding domains of human hnRNP A1 at 1.75 Å resolution. Nat. Struct. Biol. 4, 215–222 (1997).

    Article  CAS  Google Scholar 

  35. Xu, R.M., Jokhan, L., Cheng, X., Mayeda, A. & Krainer, A.R. Crystal structure of human UP1, the domain of hnRNP A1 that contains two RNA-recognition motifs. Structure 5, 559–570 (1997).

    Article  CAS  Google Scholar 

  36. Okunola, H.L. & Krainer, A.R. Cooperative-binding and splicing-repressive properties of hnRNP A1. Mol. Cell. Biol. 29, 5620–5631 (2009).

    Article  CAS  Google Scholar 

  37. Hagan, J.P., Piskounova, E. & Gregory, R.I. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 16, 1021–1025 (2009).

    Article  CAS  Google Scholar 

  38. Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696–708 (2009).

    Article  CAS  Google Scholar 

  39. Lehrbach, N.J. et al. LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nat. Struct. Mol. Biol. 16, 1016–1020 (2009).

    Article  CAS  Google Scholar 

  40. Sobczak, K., de Mecer, M., Michlewski, G., Krol, J. & Krzyzosiak, W.J. RNA structure of trinucleotide repeats associated with human neurological diseases. Nucleic Acids Res. 31, 5469–5482 (2003).

    Article  CAS  Google Scholar 

  41. Michlewski, G. & Krzyzosiak, W.J. Molecular architecture of CAG repeats in human disease related transcripts. J. Mol. Biol. 340, 665–679 (2004).

    Article  CAS  Google Scholar 

  42. Kumar, A. & Wilson, S.H. Studies of the strand-annealing activity of mammalian hnRNP complex protein A1. Biochemistry 29, 10717–10722 (1990).

    Article  CAS  Google Scholar 

  43. Pontius, B.W. & Berg, P. Renaturation of complementary DNA strands mediated by purified mammalian heterogeneous nuclear ribonucleoprotein A1 protein: implications for a mechanism for rapid molecular assembly. Proc. Natl. Acad. Sci. USA 87, 8403–8407 (1990).

    Article  CAS  Google Scholar 

  44. Munroe, S.H. & Dong, X.F. Heterogeneous nuclear ribonucleoprotein A1 catalyzes RNA.RNA annealing. Proc. Natl. Acad. Sci. USA 89, 895–899 (1992).

    Article  CAS  Google Scholar 

  45. Ruggiero, T. et al. Identification of a set of KSRP target transcripts upregulated by PI3K-AKT signaling. BMC Mol. Biol. 8, 28 (2007).

    Article  Google Scholar 

  46. Suzuki, H.I. et al. Modulation of microRNA processing by p53. Nature 460, 529–533 (2009).

    Article  CAS  Google Scholar 

  47. Ding, X.C., Weiler, J. & Grosshans, H. Regulating the regulators: mechanisms controlling the maturation of microRNAs. Trends Biotechnol. 27, 27–36 (2009).

    Article  CAS  Google Scholar 

  48. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    Article  CAS  Google Scholar 

  49. Reichman, T.W. et al. Selective regulation of gene expression by nuclear factor 110, a member of the NF90 family of double-stranded RNA-binding proteins. J. Mol. Biol. 332, 85–98 (2003).

    Article  CAS  Google Scholar 

  50. Sakamoto, S. et al. The NF90–NF45 complex functions as a negative regulator in the microRNA processing pathway. Mol. Cell. Biol. 29, 3754–3769 (2009).

    Article  CAS  Google Scholar 

  51. Berglund, L. et al. A genecentric Human Protein Atlas for expression profiles based on antibodies. Mol. Cell. Proteomics 7, 2019–2027 (2008).

    Article  CAS  Google Scholar 

  52. Kumar, M.S. et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc. Natl. Acad. Sci. USA 105, 3903–3908 (2008).

    Article  CAS  Google Scholar 

  53. Viswanathan, S.R. et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat. Genet. 41, 843–848 (2009).

    Article  CAS  Google Scholar 

  54. Tockman, M.S. et al. Prospective detection of preclinical lung cancer: results from two studies of heterogeneous nuclear ribonucleoprotein A2/B1 overexpression. Clin. Cancer Res. 3, 2237–2246 (1997).

    CAS  PubMed  Google Scholar 

  55. Ghigna, C., Moroni, M., Porta, C., Riva, S. & Biamonti, G. Altered expression of heterogenous nuclear ribonucleoproteins and SR factors in human colon adenocarcinomas. Cancer Res. 58, 5818–5824 (1998).

    CAS  PubMed  Google Scholar 

  56. Martinez-Contreras, R. et al. hnRNP proteins and splicing control. Adv. Exp. Med. Biol. 623, 123–147 (2007).

    Article  Google Scholar 

  57. Cazalla, D., Sanford, J.R. & Caceres, J.F. A rapid and efficient protocol to purify biologically active recombinant proteins from mammalian cells. Protein Expr. Purif. 42, 54–58 (2005).

    Article  CAS  Google Scholar 

  58. Cáceres, J.F., Misteli, T., Screaton, G.R., Spector, D.L. & Krainer, A.R. Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity. J. Cell Biol. 138, 225–238 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to N. Hastie and S. Macias for comments and critical reading of the manuscript, H. Kooshapur (Technical University Munich) and M. Sattler (Technical University Munich) for the generous gift of recombinant UP1 protein and D. Black (Univ. of California, Los Angeles) for providing a KSRP expression vector. This work was supported by Core funding from the Medical Research Council and a project grant from the Wellcome Trust, with additional funds from Eurasnet (European Alternative splicing Network-FP6).

Author information

Authors and Affiliations

Authors

Contributions

G.M. and J.F.C. conceived, designed and interpreted the experiments; G.M. performed the experiments and data analysis; J.F.C. supervised the whole project; both authors co-wrote the manuscript.

Corresponding author

Correspondence to Javier F Cáceres.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Methods (PDF 4153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michlewski, G., Cáceres, J. Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis. Nat Struct Mol Biol 17, 1011–1018 (2010). https://doi.org/10.1038/nsmb.1874

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1874

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing