Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ATP-independent reversal of a membrane protein aggregate by a chloroplast SRP subunit

Abstract

Membrane proteins impose enormous challenges to cellular protein homeostasis during their post-translational targeting, and they require chaperones to keep them soluble and translocation competent. Here we show that a novel targeting factor in the chloroplast signal recognition particle (cpSRP), cpSRP43, is a highly specific molecular chaperone that efficiently reverses the aggregation of its substrate proteins. In contrast to 'ATPases associated with various cellular activities' (AAA+) chaperones, cpSRP43 uses specific binding interactions with its substrate to mediate its 'disaggregase' activity. This disaggregase capability can allow targeting machineries to more effectively capture their protein substrates and emphasizes a close connection between protein folding and trafficking processes. Moreover, cpSRP43 provides the first example to our knowledge of an ATP-independent disaggregase and shows that efficient reversal of protein aggregation can be attained by specific binding interactions between a chaperone and its substrate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: cpSRP43 prevents aggregation of LHCP.
Figure 2: LHCP binds cpSRP43 with high affinity.
Figure 3: cpSRP and cpSRP43 chaperone various members of the LHC family.
Figure 4: cpSRP43 actively reverses LHCP aggregation.
Figure 5: Specific binding interactions between LHCP and cpSRP43 are essential for chaperone activity.
Figure 6: Chromodomains are essential for cpSRP43's chaperone activity.
Figure 7: cpSRP43 or LHCP mutants defective in chaperone activity could not support LHCP targeting and translocation.
Figure 8: SAXS reconstruction of full-length cpSRP43.

Similar content being viewed by others

References

  1. Balch, W.E., Morimoto, R.I., Dillin, A. & Kelly, J.F. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Hartl, F.U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Chang, H.-C., Tang, Y.-C., Hayer-Hartl, M. & Hartl, F.U. Snapshot: molecular chaperone, part I. Cell 128, 212–213 (2007).

    Article  PubMed  Google Scholar 

  4. Tang, Y.-C., Chang, H.-C., Hayer-Hartl, M. & Hartl, F.U. Snapshot: Molecular chaperones, part II. Cell 128, 412–413 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Doyle, S.M. & Wickner, S. Hsp104 and ClpB: protein disaggregating machines. Trends Biochem. Sci. 34, 40–48 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Doyle, S.M., Hoskins, J.R. & Wickner, S. Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system. Proc. Natl. Acad. Sci. USA 104, 11138–11144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Randall, L.L. & Hardy, S.J.S. SecB, one small chaperone in the complex milieu of the cell. Cell. Mol. Life Sci. 59, 1617–1623 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Walton, T.A., Sandoval, C.M., Fowler, C.A., Pardi, A. & Sousa, M.C. The cavity-chaperone Skp protects its substrate from aggregation but allows independent folding of substrate domains. Proc. Natl. Acad. Sci. USA 106, 1772–1777 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stefanovic, S. & Hegde, R.S. Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128, 1147–1159 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Mihara, K. & Omura, T. Cytoplasmic chaperones in precursor targeting to mitochondria: the role of MSF and hsp70. Trends Cell Biol. 6, 104–108 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Schuenemann, D. Structure and function of the chloroplast signal recognition particle. Curr. Genet. 44, 295–304 (2004).

    Article  CAS  Google Scholar 

  12. Schuenemann, D. et al. A novel signal recognition particle targets light-harvesting proteins to the thylakoid membranes. Proc. Natl. Acad. Sci. USA 95, 10312–10316 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Groves, M.R. et al. Functional characterization of recombinant chloroplast signal recognition particle. J. Biol. Chem. 276, 27778–27786 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Tu, C.-J., Schuenemann, D. & Hoffman, N.E. Chloroplast FtsY, chloroplast signal recognition particle, and GTP are required to reconstitute the soluble phase of light-harvesting chlorophyll protein transport into thylakoid membranes. J. Biol. Chem. 274, 27219–27224 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Klimyuk, V.I. et al. A chromodomain protein encoded by the Arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell 11, 87–99 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eichacker, L.A. & Henry, R. Function of a chloroplast SRP in thylakoid protein export. Biochim. Biophys. Acta 1541, 120–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Jonas-Straube, E., Hutin, C., Hoffman, N.E. & Schuenemann, D. Functional analysis of the protein-interacting domains of chloroplast SRP43. J. Biol. Chem. 276, 24654–24660 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Goforth, R.L. et al. Regulation of the GTPase cycle in post-translational signal recognition particle-based protein targeting involves cpSRP43. J. Biol. Chem. 279, 43077–43084 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Stengel, K.F. et al. Structural basis for specific substrate recognition by the chloroplast signal recognition particle protein cpSRP43. Science 321, 253–256 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Hermkes, R., Funke, S., Richter, C., Kuhlmann, J. & Schünemann, D. The α-helix of the second chromodomain of the 43 kDa subunit of the chloroplast signal recognition particle facilitates binding to the 54 kDa subunit. FEBS Lett. 580, 3107–3111 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, Z. et al. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428, 287–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Cammarata, K.V. & Schmidt, G.W. In vitro reconstitution of a light-harvesting gene product: deletion mutagenesis and analyses of pigment binding. Biochemistry 31, 2779–2789 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Paulsen, H., Rumler, U. & Rudiger, W. Reconstitution of pigment-containing complexes from light-harvesting chlorophyll a/b-binding protein overexpressed in Escherichia coli. Planta 181, 204–211 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. DeLille, J. et al. A novel precursor recognition element facilitates posttranslational binding to the signal recognition particle in chloroplasts. Proc. Natl. Acad. Sci. USA 97, 1926–1931 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tu, C.J., Peterson, E.C., Henry, R. & Hoffman, N.E. The L18 domain of light-harvesting chlorophyll proteins binds to chloroplast signal recognition particle 43. J. Biol. Chem. 275, 13187–13190 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Oreb, M., Tews, I. & Schleiff, E. Policing Tic 'n' Toc, the doorway to chloroplasts. Trends Cell Biol. 18, 19–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Li, X., Henry, R., Yuan, J., Cline, K. & Hoffman, N.E. A chloroplast homologue of the signal recognition particle subunit SRP54 is involved in the posttranslational integration of a protein into thylakoid membranes. Proc. Natl. Acad. Sci. USA 92, 3789–3793 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jansson, S. A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci. 4, 236–240 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Barkow, S.R., Levchenko, I., Baker, T.A. & Sauer, R.T. Polypeptide translocation by the AAA+ ClpXP protease machine. Chem. Biol. 16, 605–612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tomoyasu, T., Mogk, A., Langen, H., Goloubinoff, P. & Bukau, B. Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol. Microbiol. 40, 397–413 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Mogk, A. et al. Broad yet high substrate specificity: the challenge of AAA+ proteins. J. Struct. Biol. 146, 90–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Ali, M., Lipfert, J., Seifert, S., Herschlag, D. & Doniach, S. The ligand-free state of the TPP riboswitch: a partially folded RNA structure. J. Mol. Biol. 396, 153–165 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Sivaraja, V. et al. Three-dimensional solution structures of the chromodomains of cpSRP43. J. Biol. Chem. 280, 41465–41471 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Goloubinoff, P., Mogk, A., Ben Zvi, A.P., Tomoyasu, T. & Bukau, B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96, 13732–13737 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mogk, A. et al. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J. Biol. Chem. 278, 31033–31042 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Doyle, S.M. et al. Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity. Nat. Struct. Mol. Biol. 14, 114–122 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schlothauer, T., Mogk, A., Dougan, D.A., Bukau, B. & Turgay, K. MecA, an adaptor protein necessary for ClpC chaperone activity. Proc. Natl. Acad. Sci. USA 100, 2306–2311 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Panse, V.G., Vogel, P., Trommer, W.E. & Varadarajan, R. A thermodynamic coupling mechanism for the disaggregation of a model peptide substrate by chaperone SecB. J. Biol. Chem. 275, 18698–18703 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Hachiya, N. et al. MSF, a novel cytoplasmic chaperone which functions in precursor targeting to mitochondria. EMBO J. 13, 5146–5154 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Komiya, T., Hachiya, N., Sakaguchi, M., Omura, T. & Mihara, K. Recognition of mitochondria-targeting signals by a cytosolic import stimulation factor, MSF. J. Biol. Chem. 269, 30893–30897 (1994).

    CAS  PubMed  Google Scholar 

  41. Jaru-Ampornpan, P., Chandrasekar, S. & Shan, S. Efficient interaction between two GTPases allows the chloroplast SRP pathway to bypass the requirement for an SRP RNA. Mol. Biol. Cell 18, 2636–2645 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yuan, J. et al. ATP stimulates signal recognition particle (SRP)/FtsY-supported protein integration in chloroplasts. J. Biol. Chem. 277, 32400–32404 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Svergun, D.I. Mathematical methods in small-angle scattering data analysis. J. Appl. Crystallogr. 24, 485–492 (1991).

    Article  CAS  Google Scholar 

  44. Svergun, D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495–503 (1992).

    Article  CAS  Google Scholar 

  45. Svergun, D.I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Svergun, D.I., Petoukhov, M.V. & Koch, M.H.J. Determination of domain structure of proteins from X-ray solution scattering. Biophys. J. 80, 2946–2953 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kozin, M. & Svergun, D.I. Automated matching of high and low resolution structural models. J. Appl. Crystallogr. 34, 33–41 (2001).

    Article  CAS  Google Scholar 

  48. Volkov, V. & Svergun, D.I. Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 36, 860–864 (2003).

    Article  CAS  Google Scholar 

  49. Wriggers, W., Milligan, R.A. & McCammon, J.A. Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125, 185–195 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Wriggers, W. & Chacon, P. Using Situs for the registration of protein structures with low-resolution bead models from X-ray solution scattering. J. Appl. Crystallogr. 34, 773–776 (2001).

    Article  CAS  Google Scholar 

  51. Pettersen, E. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Henry (Univ. of Arkansas) for expression plasmids of cpSRP43 and LHCP, C. Robinson (Univ. of Warwick) for plasmids encoding LHCA1 and LHCB5, Z. Liu for help and advice with LHCP reconstitution, A. Sim and V. Chu of the Doniach group and D. Herschlag for help and advice with the SAXS experiments and D.C. Rees, W.M. Clemons, A. Varshavsky, N. Pierce and members of the Shan laboratory for comments on the manuscript. This work was supported by US National Institutes of Health grant GM078024 and career awards from the Burroughs Welcome Foundation, the Henry and Camille Dreyfus foundation, the Beckman foundation and the Packard foundation to S.-o.S. and by US National Institutes of Health program project grant P01-GM-66275 to S.D. and D.H.

Author information

Authors and Affiliations

Authors

Contributions

P. J.-A. and S.-o.S. designed experiments; P.J.-A. and T.Z.J. performed the biochemical experiments and analyzed data; V.Q.L. and M.A. performed the SAXS experiment and analyzed data; K.S., M.A. and S.D. carried out molecular dynamics simulations of SAXS data; P. J.-A. and S.-o.S. wrote the paper.

Corresponding author

Correspondence to Shu-ou Shan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1, Supplementary Note (PDF 3289 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaru-Ampornpan, P., Shen, K., Lam, V. et al. ATP-independent reversal of a membrane protein aggregate by a chloroplast SRP subunit. Nat Struct Mol Biol 17, 696–702 (2010). https://doi.org/10.1038/nsmb.1836

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing