Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synergistic action of RNA polymerases in overcoming the nucleosomal barrier

Abstract

During gene expression, RNA polymerase (RNAP) encounters a major barrier at a nucleosome and yet must access the nucleosomal DNA. Previous in vivo evidence has suggested that multiple RNAPs might increase transcription efficiency through nucleosomes. Here we have quantitatively investigated this hypothesis using Escherichia coli RNAP as a model system by directly monitoring its location on the DNA via a single-molecule DNA-unzipping technique. When an RNAP encountered a nucleosome, it paused with a distinctive 10–base pair periodicity and backtracked by 10–15 base pairs. When two RNAPs elongate in close proximity, the trailing RNAP apparently assists in the leading RNAP's elongation, reducing its backtracking and enhancing its transcription through a nucleosome by a factor of 5. Taken together, our data indicate that histone-DNA interactions dictate RNAP pausing behavior, and alleviation of nucleosome-induced backtracking by multiple polymerases may prove to be a mechanism for overcoming the nucleosomal barrier in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Locating an RNAP during elongation on nucleosomal DNA.
Figure 2: Transcription through a nucleosome shows a distinctive 10-bp periodicity pausing pattern.
Figure 3: Histone-DNA interactions induce RNAP backtracking, and prevention of backtracking facilitates transcription.
Figure 4: The trailing RNAP assists the leading RNAP to exit an arrested state.
Figure 5: Two RNAPs work synergistically to overcome a nucleosomal barrier.
Figure 6: Transcription efficiency comparison and cartoon illustrating the mechanism of transcription through nucleosomal DNA.

Similar content being viewed by others

References

  1. Izban, M.G. & Luse, D.S. Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing. Genes Dev. 5, 683–696 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Studitsky, V.M., Clark, D.J. & Felsenfeld, G. Overcoming a nucleosomal barrier to transcription. Cell 83, 19–27 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Studitsky, V.M., Kassavetis, G.A., Geiduschek, E.P. & Felsenfeld, G. Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase. Science 278, 1960–1963 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Kireeva, M.L. et al. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol. Cell 9, 541–552 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Walter, W., Kireeva, M.L., Studitsky, V.M. & Kashlev, M. Bacterial polymerase and yeast polymerase II use similar mechanisms for transcription through nucleosomes. J. Biol. Chem. 278, 36148–36156 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Kireeva, M.L. et al. Nature of the nucleosomal barrier to RNA polymerase II. Mol. Cell 18, 97–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Bondarenko, V.A. et al. Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II. Mol. Cell 24, 469–479 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Ujvari, A., Hsieh, F.K., Luse, S.W., Studitsky, V.M. & Luse, D.S. Histone N-terminal tails interfere with nucleosome traversal by RNA polymerase II. J. Biol. Chem. 283, 32236–32243 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hodges, C., Bintu, L., Lubkowska, L., Kashlev, M. & Bustamante, C. Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science 325, 626–628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kulaeva, O.I. et al. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II. Nat. Struct. Mol. Biol. 16, 1272–1278 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. O'Brien, T. & Lis, J.T. Rapid changes in Drosophila transcription after an instantaneous heat shock. Mol. Cell. Biol. 13, 3456–3463 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tennyson, C.N., Klamut, H.J. & Worton, R.G. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat. Genet. 9, 184–190 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 14, 796–806 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Awrey, D.E. et al. Yeast transcript elongation factor (TFIIS), structure and function. II: RNA polymerase binding, transcript cleavage, and read-through. J. Biol. Chem. 273, 22595–22605 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Weilbaecher, R.G., Awrey, D.E., Edwards, A.M. & Kane, C.M. Intrinsic transcript cleavage in yeast RNA polymerase II elongation complexes. J. Biol. Chem. 278, 24189–24199 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Galburt, E.A. et al. Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. Nature 446, 820–823 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Brown, C.E., Lechner, T., Howe, L. & Workman, J.L. The many HATs of transcription coactivators. Trends Biochem. Sci. 25, 15–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Anderson, J.D., Lowary, P.T. & Widom, J. Effects of histone acetylation on the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 307, 977–985 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Roth, S.Y., Denu, J.M. & Allis, C.D. Histone acetyltransferases. Annu. Rev. Biochem. 70, 81–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Belotserkovskaya, R. et al. FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090–1093 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Schwabish, M.A. & Struhl, K. The Swi/Snf complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo. Mol. Cell. Biol. 27, 6987–6995 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, T.H. et al. A high-resolution map of active promoters in the human genome. Nature 436, 876–880 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, C.K., Shibata, Y., Rao, B., Strahl, B.D. & Lieb, J.D. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat. Genet. 36, 900–905 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Varv, S., Kristjuhan, K. & Kristjuhan, A. RNA polymerase II determines the area of nucleosome loss in transcribed gene loci. Biochem. Biophys. Res. Commun. 358, 666–671 (2007).

    Article  PubMed  Google Scholar 

  25. Epshtein, V. & Nudler, E. Cooperation between RNA polymerase molecules in transcription elongation. Science 300, 801–805 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Epshtein, V., Toulme, F., Rahmouni, A.R., Borukhov, S. & Nudler, E. Transcription through the roadblocks: the role of RNA polymerase cooperation. EMBO J. 22, 4719–4727 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, M.D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Shundrovsky, A., Santangelo, T.J., Roberts, J.W. & Wang, M.D. A single-molecule technique to study sequence-dependent transcription pausing. Biophys. J. 87, 3945–3953 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ebright, R.H. RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J. Mol. Biol. 304, 687–698 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Korzheva, N. & Mustaev, A. Transcription elongation complex: structure and function. Curr. Opin. Microbiol. 4, 119–125 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Shundrovsky, A., Smith, C.L., Lis, J.T., Peterson, C.L. & Wang, M.D. Probing SWI/SNF remodeling of the nucleosome by unzipping single DNA molecules. Nat. Struct. Mol. Biol. 13, 549–554 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Hall, M.A. et al. High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nat. Struct. Mol. Biol. 16, 124–129 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiang, J. et al. Detection of high-affinity and sliding clamp modes for MSH2–MSH6 by single-molecule unzipping force analysis. Mol. Cell 20, 771–781 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Nudler, E., Gusarov, I., Avetissova, E., Kozlov, M. & Goldfarb, A. Spatial organization of transcription elongation complex in Escherichia coli. Science 281, 424–428 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Korzheva, N. et al. A structural model of transcription elongation. Science 289, 619–625 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Zaychikov, E., Denissova, L. & Heumann, H. Translocation of the Escherichia coli transcription complex observed in the registers 11 to 20: “jumping” of RNA polymerase and asymmetric expansion and contraction of the “transcription bubble”. Proc. Natl. Acad. Sci. USA 92, 1739–1743 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lowary, P.T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Samkurashvili, I. & Luse, D.S. Translocation and transcriptional arrest during transcript elongation by RNA polymerase II. J. Biol. Chem. 271, 23495–23505 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Dong, F., Hansen, J.C. & van Holde, K.E. DNA and protein determinants of nucleosome positioning on sea urchin 5S rRNA gene sequences in vitro. Proc. Natl. Acad. Sci. USA 87, 5724–5728 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peng, H.F. & Jackson, V. Measurement of the frequency of histone displacement during the in vitro transcription of nucleosomes: RNA is a competitor for these histones. Biochemistry 36, 12371–12382 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Bai, L., Shundrovsky, A. & Wang, M.D. Sequence-dependent kinetic model for transcription elongation by RNA polymerase. J. Mol. Biol. 344, 335–349 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Saeki, H. & Svejstrup, J.Q. Stability, flexibility, and dynamic interactions of colliding RNA polymerase II elongation complexes. Mol. Cell 35, 191–205 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shaevitz, J.W., Abbondanzieri, E.A., Landick, R. & Block, S.M. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 426, 684–687 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bai, L., Fulbright, R.M. & Wang, M.D. Mechanochemical kinetics of transcription elongation. Phys. Rev. Lett. 98, 068103 (2007).

    Article  PubMed  Google Scholar 

  46. Yankulov, K., Blau, J., Purton, T., Roberts, S. & Bentley, D.L. Transcriptional elongation by RNA polymerase II is stimulated by transactivators. Cell 77, 749–759 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Mason, P.B. & Struhl, K. Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mol. Cell 17, 831–840 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Archambault, J., Lacroute, F., Ruet, A. & Friesen, J.D. Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II. Mol. Cell. Biol. 12, 4142–4152 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Orlova, M., Newlands, J., Das, A., Goldfarb, A. & Borukhov, S. Intrinsic transcript cleavage activity of RNA polymerase. Proc. Natl. Acad. Sci. USA 92, 4596–4600 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Strobl, L.J. & Eick, D. Hold back of RNA polymerase II at the transcription start site mediates down-regulation of c-myc in vivo. EMBO J. 11, 3307–3314 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Benjamin, L.R. & Gilmour, D.S. Nucleosomes are not necessary for promoter-proximal pausing in vitro on the Drosophila hsp70 promoter. Nucleic Acids Res. 26, 1051–1055 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Conaway, J.W., Shilatifard, A., Dvir, A. & Conaway, R.C. Control of elongation by RNA polymerase II. Trends Biochem. Sci. 25, 375–380 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Cheng, C. & Sharp, P.A. RNA polymerase II accumulation in the promoter-proximal region of the dihydrofolate reductase and γ-actin genes. Mol. Cell. Biol. 23, 1961–1967 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Saunders, A., Core, L.J. & Lis, J.T. Breaking barriers to transcription elongation. Nat. Rev. Mol. Cell Biol. 7, 557–567 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Core, L.J. & Lis, J.T. Transcription regulation through promoter-proximal pausing of RNA polymerase II. Science 319, 1791–1792 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Orphanides, G. & Reinberg, D. RNA polymerase II elongation through chromatin. Nature 407, 471–475 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Koch, S.J., Shundrovsky, A., Jantzen, B.C. & Wang, M.D. Probing protein-DNA interactions by unzipping a single DNA double helix. Biophys. J. 83, 1098–1105 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Wang laboratory for critical reading of the manuscript, J. Widom (Northwestern University) for the plasmid containing the 601 NPE and the J. Roberts laboratory (Cornell University) for help with the phosphorescence gel scanner. M.D.W. wishes to acknowledge support from the US National Institutes of Health (GM059849), the US National Science Foundation (MCB-0820293), the Keck Foundation Distinguished Young Scholar in Medical Research Award and the Cornell Nanobiotechnology Center.

Author information

Authors and Affiliations

Authors

Contributions

J.J. designed and constructed transcription templates, designed and performed bulk and single-molecule transcription experiments, analyzed the data, participated in all discussions and proposal of the model and also wrote the manuscript; L.B., D.S.J. and M.L.K. offered suggestions and technical advice and helped troubleshoot the experiments; R.M.F. purified E. coli RNAP and histones and revised the manuscript; M.K. helped with the design of the project, offered advice on biochemical studies and contributed significantly to the manuscript revision; M.D.W. supervised the study throughout all stages of the project and wrote the manuscript.

Corresponding author

Correspondence to Michelle D Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Discussion (PDF 3717 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, J., Bai, L., Johnson, D. et al. Synergistic action of RNA polymerases in overcoming the nucleosomal barrier. Nat Struct Mol Biol 17, 745–752 (2010). https://doi.org/10.1038/nsmb.1798

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1798

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing