Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule stepping and structural dynamics of myosin X

Abstract

Myosin X is an unconventional myosin with puzzling motility properties. We studied the motility of dimerized myosin X using the single-molecule fluorescence techniques polTIRF, FIONA and Parallax to measure the rotation angles and three-dimensional position of the molecule during its walk. It was found that Myosin X steps processively in a hand-over-hand manner following a left-handed helical path along both single actin filaments and bundles. Its step size and velocity are smaller on actin bundles than individual filaments, suggesting myosin X often steps onto neighboring filaments in a bundle. The data suggest that a previously postulated single α-helical domain mechanically extends the lever arm, which has three IQ motifs, and either the neck-tail hinge or the tail is flexible. These structural features, in conjunction with the membrane- and microtubule-binding domains, enable myosin X to perform multiple functions on varied actin structures in cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Processivity and stepping rates of labeled myosin X (MyoX-LA-QD655) actin filaments and actin bundles.
Figure 2: polTIRF results for MyoX-BRCaM stepping on an actin filament immobilized on the glass surface.
Figure 3: Alternating step size supports the hand-over-hand model of myosin X.
Figure 4: MyoX-CT-QD655 shows different stepping behavior along actin filaments and bundles.
Figure 5: Parallax tracking of myosin X molecules stepping along suspended actin filaments and bundles at 1 μM Mg-ATP.
Figure 6: Radial amplitudes of helical paths of myosin X molecules stepping along suspended actins.

Similar content being viewed by others

References

  1. Berg, J.S., Derfler, B.H., Pennisi, C.M., Corey, D.P. & Cheney, R.E. Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J. Cell Sci. 113, 3439–3451 (2000).

    CAS  PubMed  Google Scholar 

  2. Berg, J.S. & Cheney, R.E. Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nat. Cell Biol. 4, 246–250 (2002).

    Article  CAS  Google Scholar 

  3. Tokuo, H. & Ikebe, M. Myosin X transports Mena/VASP to the tip of filopodia. Biochem. Biophys. Res. Commun. 319, 214–220 (2004).

    Article  CAS  Google Scholar 

  4. Zhang, H. et al. Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat. Cell Biol. 6, 523–531 (2004).

    Article  Google Scholar 

  5. Sousa, A.D. & Cheney, R.E. Myosin-X: a molecular motor at the cell's fingertips. Trends Cell Biol. 15, 533–539 (2005).

    Article  CAS  Google Scholar 

  6. Bohil, A.B., Robertson, B.W. & Cheney, R.E. Myosin-X is a molecular motor that functions in filopodia formation. Proc. Natl. Acad. Sci. USA 103, 12411–12416 (2006).

    Article  CAS  Google Scholar 

  7. Nagy, S. et al. A myosin motor that selects bundled actin for motility. Proc. Natl. Acad. Sci. USA 105, 9616–9620 (2008).

    Article  CAS  Google Scholar 

  8. Kovacs, M., Wang, F. & Sellers, J.R. Mechanism of action of myosin X, a membrane-associated molecular motor. J. Biol. Chem. 280, 15071–15083 (2005).

    Article  CAS  Google Scholar 

  9. Zhu, X.-J. et al. Myosin X regulates netrin receptors and functions in axonal path-finding. Nat. Cell Biol. 9, 184–192 (2007).

    Article  CAS  Google Scholar 

  10. Pi, X. et al. Sequential roles for myosin-X in BMP6-dependent filopodial extension, migration, and activation of BMP receptors. J. Cell Biol. 179, 1569–1582 (2007).

    Article  CAS  Google Scholar 

  11. Weber, K.L., Sokac, A.M., Berg, J.S., Cheney, R.E. & Bement, W.M. A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431, 325–329 (2004).

    Article  CAS  Google Scholar 

  12. Toyoshima, F. & Nishida, E. Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner. EMBO J. 26, 1487–1498 (2007).

    Article  CAS  Google Scholar 

  13. Woolner, S., O'Brien, L.L., Wiese, C. & Bement, W.M. Myosin-10 and actin filaments are essential for mitotic spindle function. J. Cell Biol. 182, 77–88 (2008).

    Article  CAS  Google Scholar 

  14. Wühr, M., Mitchison, T.J. & Field, C.M. Mitosis: new roles for myosin-X and actin at the spindle. Curr. Biol. 18, R912–914 (2008).

    Article  Google Scholar 

  15. Tokuo, H., Mabuchi, K. & Ikebe, M. The motor activity of myosin-X promotes actin fiber convergence at the cell periphery to initiate filopodia formation. J. Cell Biol. 179, 229–238 (2007).

    Article  CAS  Google Scholar 

  16. Knight, P.J. et al. The predicted coiled-coil domain of myosin 10 forms a novel elongated domain that lengthens the head. J. Biol. Chem. 280, 34702–34708 (2005).

    Article  CAS  Google Scholar 

  17. Park, H. et al. Full-length myosin VI dimerizes and moves processively along actin filaments upon monomer clustering. Mol. Cell 21, 331–336 (2006).

    Article  CAS  Google Scholar 

  18. Homma, K. & Ikebe, M. Myosin X is a high duty ratio motor. J. Biol. Chem. 280, 29381–29391 (2005).

    Article  CAS  Google Scholar 

  19. Homma, K., Saito, J., Ikebe, R. & Ikebe, M. Motor function and regulation of myosin X. J. Biol. Chem. 276, 34348–34354 (2001).

    Article  CAS  Google Scholar 

  20. Sun, Y. et al. Myosin VI walks “wiggly” on actin with large and variable tilting. Mol. Cell 28, 954–964 (2007).

    Article  CAS  Google Scholar 

  21. Forkey, J.N., Quinlan, M.E. & Goldman, Y.E. Protein structural dynamics by single-molecule fluorescence polarization. Prog. Biophys. Mol. Biol. 74, 1–35 (2000).

    Article  CAS  Google Scholar 

  22. Rosenberg, S.A., Quinlan, M.E., Forkey, J.N. & Goldman, Y.E. Rotational motions of macromolecules by single-molecule fluorescence microscopy. Acc. Chem. Res. 38, 583–593 (2005).

    Article  CAS  Google Scholar 

  23. Forkey, J.N., Quinlan, M.E., Shaw, M.A., Corrie, J.E.T. & Goldman, Y.E. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003).

    Article  CAS  Google Scholar 

  24. Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    Article  CAS  Google Scholar 

  25. Sun, Y., Dawicki McKenna, J.M., Murray, J.M., Ostap, E.M. & Goldman, Y.E. Parallax: high accuracy three-dimensional single molecule tracking using split images. Nano Lett. 9, 2676–2682 (2009).

    Article  CAS  Google Scholar 

  26. Rock, R.S. et al. A flexible domain is essential for the large step size and processivity of myosin VI. Mol. Cell 17, 603–609 (2005).

    Article  CAS  Google Scholar 

  27. Beausang, J.F., Sun, Y., Quinlan, M.E., Forkey, J.N. & Goldman, Y.E. Single molecule fluorescence polarization via polarized total internal reflection fluorescent microscopy. in Single-Molecule Techniques: A Laboratory Manual (eds. Selvin, P.R. & Ha, T.) 121–148 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA, 2007).

  28. Ökten, Z., Churchman, L.S., Rock, R.S. & Spudich, J.A. Myosin VI walks hand-over-hand along actin. Nat. Struct. Mol. Biol. 11, 884–887 (2004).

    Article  Google Scholar 

  29. Yildiz, A. et al. Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. J. Biol. Chem. 279, 37222–37226 (2004).

    Article  Google Scholar 

  30. Ishikawa, R., Sakamoto, T., Ando, T., Higashi-Fujime, S. & Kohama, K. Polarized actin bundles formed by human fascin-1: their sliding and disassembly on myosin II and myosin V in vitro. J. Neurochem. 87, 676–685 (2003).

    Article  CAS  Google Scholar 

  31. Vilfan, A. Elastic lever-arm model for myosin V. Biophys. J. 88, 3792–3805 (2005).

    Article  CAS  Google Scholar 

  32. Lan, G. & Sun, S.X. Flexible light-chain and helical structure of F-actin explain the movement and step size of myosin-VI. Biophys. J. 91, 4002–4013 (2006).

    Article  CAS  Google Scholar 

  33. Beausang, J.F., Schroeder, H.W. III, Nelson, P.C. & Goldman, Y.E. Twirling of actin by myosins II and V observed via polarized TIRF in a modified gliding assay. Biophys. J. 95, 5820–5831 (2008).

    Article  CAS  Google Scholar 

  34. Sako, Y., Minoguchi, S. & Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat. Cell Biol. 2, 168–172 (2000).

    Article  CAS  Google Scholar 

  35. Ali, M.Y. et al. Myosin V is a left-handed spiral motor on the right-handed actin helix. Nat. Struct. Biol. 9, 464–467 (2002).

    Article  CAS  Google Scholar 

  36. Arsenault, M.E., Sun, Y., Bau, H.H. & Goldman, Y.E. Using electrical and optical tweezers to facilitate studies of molecular motors. Phys. Chem. Chem. Phys. 11, 4834–4839 (2009).

    Article  CAS  Google Scholar 

  37. Arsenault, M.E., Zhao, H., Purohit, P.K., Goldman, Y.E. & Bau, H.H. Confinement and manipulation of actin filaments by electric fields. Biophys. J. 93, L42–L44 (2007).

    Article  CAS  Google Scholar 

  38. Mukherjea, M. et al. Myosin VI dimerization triggers an unfolding of a three-helix bundle in order to extend its reach. Mol. Cell 35, 305–315 (2009).

    Article  CAS  Google Scholar 

  39. Rock, R.S. et al. Myosin VI is a processive motor with a large step size. Proc. Natl. Acad. Sci. USA 98, 13655–13659 (2001).

    Article  CAS  Google Scholar 

  40. Choe, S. & Sun, S.X. The elasticity of α-helices. J. Chem. Phys. 122, 244912 (2005).

    Article  Google Scholar 

  41. Baboolal, T.G. et al. The SAH domain extends the functional length of the myosin lever. Proc. Natl. Acad. Sci. USA 106, 22193–22198 (2009).

    Article  CAS  Google Scholar 

  42. Li, X.-D., Jung, H.S., Mabuchi, K., Craig, R. & Ikebe, M. The globular tail domain of myosin Va functions as an inhibitor of the myosin Va motor. J. Biol. Chem. 281, 21789–21798 (2006).

    Article  CAS  Google Scholar 

  43. Thirumurugan, K., Sakamoto, T., Hammer, J.A. III, Sellers, J.R. & Knight, P.J. The cargo-binding domain regulates structure and activity of myosin 5. Nature 442, 212–215 (2006).

    Article  CAS  Google Scholar 

  44. Yu, C. et al. Myosin VI undergoes cargo-mediated dimerization. Cell 138, 537–548 (2009).

    Article  CAS  Google Scholar 

  45. Phichith, D. et al. Cargo binding induces dimerization of myosin VI. Proc. Natl. Acad. Sci. USA 106, 17320–17324 (2009).

    Article  CAS  Google Scholar 

  46. Iwaki, M. et al. Cargo-binding makes a wild-type single-headed myosin-VI move processively. Biophys. J. 90, 3643–3652 (2006).

    Article  CAS  Google Scholar 

  47. Kerssemakers, J.W. et al. Assembly dynamics of microtubules at molecular resolution. Nature 442, 709–712 (2006).

    Article  CAS  Google Scholar 

  48. Corrie, J.E.T., Craik, J.S. & Munasinghe, V.R.N. A homobifunctional rhodamine for labeling proteins with defined orientations of a fluorophore. Bioconjug. Chem. 9, 160–167 (1998).

    Article  CAS  Google Scholar 

  49. Dunn, A.R. & Spudich, J.A. Dynamics of the unbound head during myosin V processive translocation. Nat. Struct. Mol. Biol. 14, 246–248 (2007).

    Article  CAS  Google Scholar 

  50. Pardee, J.D. & Spudich, J.A. Purification of muscle actin. Methods Cell Biol. 24, 271–289 (1982).

    Article  CAS  Google Scholar 

  51. Homma, K., Saito, J., Ikebe, R. & Ikebe, M. Ca2+-dependent regulation of the motor activity of myosin V. J. Biol. Chem. 275, 34766–34771 (2000).

    Article  CAS  Google Scholar 

  52. Harada, Y., Sakurada, K., Aoki, T., Thomas, D.D. & Yanagida, T. Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J. Mol. Biol. 216, 49–68 (1990).

    Article  CAS  Google Scholar 

  53. Michel, B. et al. Printing meets lithography: soft approaches to high-resolution printing. IBM J. Res. Develop. 45, 697–719 (2001).

    Article  CAS  Google Scholar 

  54. Schmid, H. & Michel, B. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33, 3042–3049 (2000).

    Article  CAS  Google Scholar 

  55. Nitzsche, B., Ruhnow, F. & Diez, S. Quantum-dot-assisted characterization of microtubule rotations during cargo transport. Nat. Nanotechnol. 3, 552–556 (2008).

    Article  CAS  Google Scholar 

  56. Abramoff, M.D., Magelhaes, P.J. & Ram, S.J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).

    Google Scholar 

Download references

Acknowledgements

We acknowledge discussion and comments by J.H. Lewis and J.F. Beausang. We thank T.M. Svitkina and C. Yang for characterization of fascin-bundled actin by electron microscopy (US National Institutes of Health (NIH) grant RR 22482) and K. Homma (University of Massachusetts Medical School) for the GFP–Myosin X HMM construct. Bifunctional rhodamine (BR-I2) was a generous gift from J.E.T. Corrie (UK Medical Research Council National Institute for Medical Research). This work was supported by US National Science Foundation Nanoscale Science and Engineering Center grant DMR-0425780 through the Nano/Bio Interface Center and NIH grant GM086352.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yale E Goldman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Sato, O., Ruhnow, F. et al. Single-molecule stepping and structural dynamics of myosin X. Nat Struct Mol Biol 17, 485–491 (2010). https://doi.org/10.1038/nsmb.1785

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1785

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing