Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation

Abstract

GW182-family proteins are essential for microRNA-mediated translational repression and deadenylation in animal cells. Here we show that a conserved motif in the human GW182 paralog TNRC6C interacts with the C-terminal domain of polyadenylate binding protein 1 (PABC) and present the crystal structure of the complex. Mutations at the complex interface impair mRNA deadenylation in mammalian cell extracts, suggesting that the GW182-PABC interaction contributes to microRNA-mediated gene silencing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The DUF domain of TNRC6C interacts with the C-terminal domain of PABPC1.
Figure 2: Disruption of the TNRC6C–PABC interaction interferes with mRNA deadenylation in vitro.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Filipowicz, W., Bhattacharyya, S.N. & Sonenberg, N. Nat. Rev. Genet. 9, 102–114 (2008).

    Article  CAS  Google Scholar 

  2. Eulalio, A., Huntzinger, E. & Izaurralde, E. Cell 132, 9–14 (2008).

    Article  CAS  Google Scholar 

  3. Eulalio, A., Tritschler, F. & Izaurralde, E. RNA 15, 1433–1442 (2009).

    Article  CAS  Google Scholar 

  4. Behm-Ansmant, I. et al. Genes Dev. 20, 1885–1898 (2006).

    Article  CAS  Google Scholar 

  5. Till, S. et al. Nat. Struct. Mol. Biol. 14, 897–903 (2007).

    Article  CAS  Google Scholar 

  6. Eulalio, A., Huntzinger, E. & Izaurralde, E. Nat. Struct. Mol. Biol. 15, 346–353 (2008).

    Article  CAS  Google Scholar 

  7. Zipprich, J.T., Bhattacharyya, S., Mathys, H. & Filipowicz, W. RNA 15, 781–793 (2009).

    Article  CAS  Google Scholar 

  8. Eulalio, A., Helms, S., Fritzsch, C., Fauser, M. & Izaurralde, E. RNA 15, 1067–1077 (2009).

    Article  CAS  Google Scholar 

  9. Chekulaeva, M., Filipowicz, W. & Parker, R. RNA 15, 794–803 (2009).

    Article  CAS  Google Scholar 

  10. Lazzaretti, D., Tournier, I. & Izaurralde, E. RNA 15, 1059–1066 (2009).

    Article  CAS  Google Scholar 

  11. Höck, J. et al. EMBO Rep. 8, 1052–1060 (2007).

    Article  Google Scholar 

  12. Landthaler, M. et al. RNA 14, 2580–2596 (2008).

    Article  CAS  Google Scholar 

  13. Fabian, M.R. et al. Mol. Cell 35, 868–880 (2009).

    Article  CAS  Google Scholar 

  14. Zekri, L., Huntzinger, E., Heimstadt, S. & Izaurralde, E. Mol. Cell. Biol. 29, 6220–6231 (2009).

    Article  CAS  Google Scholar 

  15. Craig, A.W., Haghighat, A., Yu, A.T. & Sonenberg, N. Nature 392, 520–523 (1998).

    Article  CAS  Google Scholar 

  16. Khaleghpour, K. et al. Mol. Cell 7, 205–216 (2001).

    Article  CAS  Google Scholar 

  17. Khaleghpour, K. et al. Mol. Cell. Biol. 21, 5200–5213 (2001).

    Article  CAS  Google Scholar 

  18. Kozlov, G. et al. EMBO J. 23, 272–281 (2004).

    Article  CAS  Google Scholar 

  19. Roy, G. et al. Mol. Cell. Biol. 22, 3769–3782 (2002).

    Article  CAS  Google Scholar 

  20. Baron-Benhamou, J., Gehring, N.H., Kulozik, A.E. & Hentze, M.W. Methods Mol. Biol. 257, 135–154 (2004).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank D. King (Howard Hughes Medical Institute Mass Spectrometry Laboratory, Univ. California Berkeley) for peptide synthesis and mass spectrometry, and C. Ralston and J. Holton (Beamlines 8.2.1 and 8.3.1, Advanced Light Source, Lawrence Berkeley National Laboratory) for assistance with X-ray data collection. We are indebted to W. Filipowicz for discussions and to members of the Doudna laboratory for critical reading of the manuscript. M.J. is supported by a Human Frontiers Science Program fellowship. M.R.F. is supported by a Terry Fox Foundation fellowship from the Canadian Cancer Society. This work was funded in part by a Canadian Institutes of Health Research grant to N.S. N.S. is an International Scholar of the Howard Hughes Medical Institute. J.A.D. is a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

Authors

Contributions

M.J., M.R.F., N.S. and J.A.D. designed experiments. M.J. performed binding assays, crystallized the TNRC6C–PABC complex and determined its structure. M.R.F. performed in vitro deadenylation assays. S.M.C. assisted with X-ray data collection and structure determination. M.J. and J.A.D. wrote the manuscript.

Corresponding author

Correspondence to Jennifer A Doudna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1 and Supplementary Methods (PDF 3357 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jinek, M., Fabian, M., Coyle, S. et al. Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation. Nat Struct Mol Biol 17, 238–240 (2010). https://doi.org/10.1038/nsmb.1768

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1768

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing