Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of the catalytic subunit FANCL of the Fanconi anemia core complex

Abstract

The Fanconi anemia (FA) pathway is activated in response to DNA damage, leading to monoubiquitination of the substrates FANCI and FANCD2 by the FA core complex. Here we report the crystal structure of FANCL, the catalytic subunit of the FA core complex, at 3.2 Å. The structure reveals an architecture fundamentally different from previous sequence-based predictions. The molecule is composed of an N-terminal E2-like fold, which we term the ELF domain, a novel double-RWD (DRWD) domain, and a C-terminal really interesting new gene (RING) domain predicted to facilitate E2 binding. Binding assays show that the DRWD domain, but not the ELF domain, is responsible for substrate binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain architecture of FANCL.
Figure 2: Comparison of UBC-superfamily folds with E2s and RWD proteins.
Figure 3: Protein-protein interaction surfaces on FANCL.
Figure 4: The DRWD domain recruits substrate.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Alter, B.P. Fanconi's anemia and malignancies. Am. J. Hematol. 53, 99–110 (1996).

    Article  CAS  Google Scholar 

  2. Howlett, N.G. et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297, 606–609 (2002).

    Article  CAS  Google Scholar 

  3. Strathdee, C.A., Duncan, A.M. & Buchwald, M. Evidence for at least four Fanconi anaemia genes including FACC on chromosome 9. Nat. Genet. 1, 196–198 (1992).

    Article  CAS  Google Scholar 

  4. Lo Ten Foe, J.R. et al. Expression cloning of a cDNA for the major Fanconi anaemia gene, FAA. Nat. Genet. 14, 320–323 (1996).

    Article  CAS  Google Scholar 

  5. Meetei, A.R. et al. X-linked inheritance of Fanconi anemia complementation group B. Nat. Genet. 36, 1219–1224 (2004).

    Article  CAS  Google Scholar 

  6. Timmers, C. et al. Positional cloning of a novel Fanconi anemia gene, FANCD2. Mol. Cell 7, 241–248 (2001).

    Article  CAS  Google Scholar 

  7. de Winter, J.P. et al. The Fanconi anaemia gene FANCF encodes a novel protein with homology to ROM. Nat. Genet. 24, 15–16 (2000).

    Article  CAS  Google Scholar 

  8. de Winter, J.P. et al. The Fanconi anaemia group G gene FANCG is identical with XRCC9. Nat. Genet. 20, 281–283 (1998).

    Article  CAS  Google Scholar 

  9. Levitus, M. et al. Heterogeneity in Fanconi anemia: evidence for 2 new genetic subtypes. Blood 103, 2498–2503 (2004).

    Article  CAS  Google Scholar 

  10. Levitus, M. et al. The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J. Nat. Genet. 37, 934–935 (2005).

    Article  CAS  Google Scholar 

  11. Meetei, A.R. et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nat. Genet. 35, 165–170 (2003).

    Article  CAS  Google Scholar 

  12. Garcia-Higuera, I., Kuang, Y., Naf, D., Wasik, J. & D'Andrea, A.D. Fanconi anemia proteins FANCA, FANCC, and FANCG/XRCC9 interact in a functional nuclear complex. Mol. Cell. Biol. 19, 4866–4873 (1999).

    Article  CAS  Google Scholar 

  13. Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262 (2001).

    Article  CAS  Google Scholar 

  14. Smogorzewska, A. et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129, 289–301 (2007).

    Article  CAS  Google Scholar 

  15. Sims, A.E. et al. FANCI is a second monoubiquitinated member of the Fanconi anemia pathway. Nat. Struct. Mol. Biol. 14, 564–567 (2007).

    Article  CAS  Google Scholar 

  16. Wang, X., Andreassen, P.R. & D'Andrea, A.D. Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. Mol. Cell. Biol. 24, 5850–5862 (2004).

    Article  CAS  Google Scholar 

  17. Nakanishi, K. et al. Interaction of FANCD2 and NBS1 in the DNA damage response. Nat. Cell Biol. 4, 913–920 (2002).

    Article  CAS  Google Scholar 

  18. Alpi, A.F., Pace, P.E., Babu, M.M. & Patel, K.J. Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Mol. Cell 32, 767–777 (2008).

    Article  CAS  Google Scholar 

  19. Marek, L.R. & Bale, A.E. Drosophila homologs of FANCD2 and FANCL function in DNA repair. DNA Repair (Amst.) 5, 1317–1326 (2006).

    Article  CAS  Google Scholar 

  20. Hamilton, K.S. et al. Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. Structure 9, 897–904 (2001).

    Article  CAS  Google Scholar 

  21. Nameki, N. et al. Solution structure of the RWD domain of the mouse GCN2 protein. Protein Sci. 13, 2089–2100 (2004).

    Article  CAS  Google Scholar 

  22. Burroughs, A.M., Jaffee, M., Iyer, L.M. & Aravind, L. Anatomy of the E2 ligase fold: implications for enzymology and evolution of ubiquitin/Ub-like protein conjugation. J. Struct. Biol. 162, 205–218 (2008).

    Article  CAS  Google Scholar 

  23. Zheng, N., Wang, P., Jeffrey, P.D. & Pavletich, N.P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533–539 (2000).

    Article  CAS  Google Scholar 

  24. Eddins, M.J., Carlile, C.M., Gomez, K.M., Pickart, C.M. & Wolberger, C. Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat. Struct. Mol. Biol. 13, 915–920 (2006).

    Article  CAS  Google Scholar 

  25. Huang, D.T. et al. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. Mol. Cell 17, 341–350 (2005).

    Article  CAS  Google Scholar 

  26. Borden, K.L. RING domains: master builders of molecular scaffolds? J. Mol. Biol. 295, 1103–1112 (2000).

    Article  CAS  Google Scholar 

  27. Zheng, N. et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002).

    Article  CAS  Google Scholar 

  28. Mace, P.D. et al. Structures of the cIAP2 RING domain reveal conformational changes associated with ubiquitin-conjugating enzyme (E2) recruitment. J. Biol. Chem. 283, 31633–31640 (2008).

    Article  CAS  Google Scholar 

  29. Machida, Y.J. et al. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol. Cell 23, 589–596 (2006).

    Article  CAS  Google Scholar 

  30. Gurtan, A.M., Stuckert, P. & D'Andrea, A.D. The WD40 repeats of FANCL are required for Fanconi anemia core complex assembly. J. Biol. Chem. 281, 10896–10905 (2006).

    Article  CAS  Google Scholar 

  31. Zhang, X.Y. et al. Xpf and not the Fanconi anaemia proteins or Rev3 accounts for the extreme resistance to cisplatin in Dictyostelium discoideum. PLoS Genet. 5, e1000645 (2009).

    Article  Google Scholar 

  32. Mossessova, E. & Lima, C.D. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865–876 (2000).

    Article  CAS  Google Scholar 

  33. Collaborative Computational Project. Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  34. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  Google Scholar 

  35. de La Fortelle, E., Irwin, J. & Bricogne, G. A maximum-likelihood heavy-atom parameter refinement program for the MIR and MAD methods. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  36. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  37. DeLano, W.L. The PyMol Molecular Graphics System (DeLano Scientific, Palo Alto, California, USA, 2008).

  38. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  Google Scholar 

  39. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for the building of protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  40. Sundquist, W.I. et al. Ubiquitin recognition by the human TSG101 protein. Mol. Cell 13, 783–789 (2004).

    Article  CAS  Google Scholar 

  41. Yamashita, A., Maeda, K. & Maeda, Y. Crystal structure of CapZ: structural basis for actin filament barbed end capping. EMBO J. 22, 1529–1538 (2003).

    Article  CAS  Google Scholar 

  42. Vedadi, M. et al. Genome-scale protein expression and structural biology of Plasmodium falciparum and related Apicomplexan organisms. Mol. Biochem. Parasitol. 151, 100–110 (2007).

    Article  CAS  Google Scholar 

  43. Zhang, M. et al. Chaperoned ubiquitylation—crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20, 525–538 (2005).

    Article  CAS  Google Scholar 

  44. Moraes, T.F. et al. Crystal structure of the human ubiquitin conjugating enzyme complex hMms2-hUbc13. Nat. Struct. Biol. 8, 669–673 (2001).

    Article  CAS  Google Scholar 

  45. Wei, R.R. et al. Structure of a central component of the yeast kinetochore: the Spc24p/Spc25p globular domain. Structure 14, 1003–1009 (2006).

    Article  CAS  Google Scholar 

  46. Ciferri, C. et al. Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133, 427–439 (2008).

    Article  CAS  Google Scholar 

  47. Yin, Q. et al. E2 interaction and dimerization in the crystal structure of TRAF6. Nat. Struct. Mol. Biol. 16, 658–666 (2009).

    Article  CAS  Google Scholar 

  48. Teo, H., Veprintser, D. & Williams, R.L. Structural insights into endosomal sorting complex required for transport (ESCRT-I) recognition of ubiquitinated proteins. J. Biol. Chem. 279, 28689–28696 (2004).

    Article  CAS  Google Scholar 

  49. Lewis, M.J., Saltibus, L.F., Hau, D.D., Xiao, W. & Spyracopolous, L. Structural basis for non-covalent interaction between ubiquitin and the ubiquitin conjugating enzyme human MMS2. J. Biomol. NMR 34, 89–100 (2006).

    Article  CAS  Google Scholar 

  50. Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends. Biochem. Sci. 20, 478–480 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Way and F. Pinto for help with improving the manuscript, V. Chaugule for critical comments, discussion and technical assistance, L. Wood for assistance with sequence analysis and S. Kjaer and S. Kisakye-Nambozo of the Protein Production Facility for generation of the baculoviruses and subsequent Sf9 infection. All authors are funded by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Contributions

A.R.C. crystallized, solved, refined and analyzed the FANCL structure and performed the biochemical experiments. All authors cloned, expressed and purified proteins. H.W. designed and supervised the study. A.R.C. and H.W. wrote the manuscript.

Corresponding author

Correspondence to Helen Walden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–6 (PDF 7227 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, A., Lewis, L. & Walden, H. The structure of the catalytic subunit FANCL of the Fanconi anemia core complex. Nat Struct Mol Biol 17, 294–298 (2010). https://doi.org/10.1038/nsmb.1759

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1759

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing