Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation

Abstract

Aggregation of proteins containing polyglutamine (polyQ) expansions characterizes many neurodegenerative disorders, including Huntington's disease. Molecular chaperones modulate the aggregation and toxicity of the huntingtin (Htt) protein by an ill-defined mechanism. Here we determine how the chaperonin TRiC suppresses Htt aggregation. Unexpectedly, TRiC does not physically block the polyQ tract itself, but rather sequesters a short Htt sequence element, N-terminal to the polyQ tract, that promotes the amyloidogenic conformation. The residues of this element essential for rapid Htt aggregation are directly bound by TRiC. Our findings illustrate how molecular chaperones, which recognize hydrophobic determinants, can prevent aggregation of polar polyQ tracts associated with neurodegenerative diseases. The observation that short endogenous sequence elements can accelerate the switch of polyQ tracts to an amyloidogenic conformation provides a novel target for therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping the contact sites between Htt-exon1 and the chaperonin TRiC.
Figure 2: The N terminus of Htt promotes rapid polyQ aggregation.
Figure 3: The N terminus of Htt interacts with N17 and the polyQ region in Htt-exon1.
Figure 4: The amphipathic N-terminal helix of Htt is necessary for rapid aggregation.
Figure 5: The hydrophobic surface of the N17 helix is the major Htt binding site for the chaperonin TRiC.
Figure 6: Htt polyQ aggregation is controlled by the interplay of positive and negative regulatory sequence elements together with the chaperone machinery.

Similar content being viewed by others

References

  1. Zoghbi, H.Y. & Orr, H.T. Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23, 217–247 (2000).

    Article  CAS  Google Scholar 

  2. Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 4, 49–60 (2003).

    Article  CAS  Google Scholar 

  3. Chen, S., Berthelier, V., Yang, W. & Wetzel, R. Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J. Mol. Biol. 311, 173–182 (2001).

    Article  CAS  Google Scholar 

  4. Yang, W., Dunlap, J.R., Andrews, R.B. & Wetzel, R. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 11, 2905–2917 (2002).

    Article  CAS  Google Scholar 

  5. Dobson, C.M. Principles of protein folding, misfolding and aggregation. Semin. Cell Dev. Biol. 15, 3–16 (2004).

    Article  CAS  Google Scholar 

  6. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    Article  CAS  Google Scholar 

  7. Glabe, C.G. & Kayed, R. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 66, S74–S78 (2006).

    Article  CAS  Google Scholar 

  8. Brinkman, R.R., Mezei, M.M., Theilmann, J., Almqvist, E. & Hayden, M.R. The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size. Am. J. Hum. Genet. 60, 1202–1210 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Duennwald, M.L., Jagadish, S., Giorgini, F., Muchowski, P.J. & Lindquist, S. A network of protein interactions determines polyglutamine toxicity. Proc. Natl. Acad. Sci. USA 103, 11051–11056 (2006).

    Article  CAS  Google Scholar 

  10. Muchowski, P.J. & Wacker, J.L. Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci. 6, 11–22 (2005).

    Article  CAS  Google Scholar 

  11. Dehay, B. & Bertolotti, A. Critical role of the proline-rich region in Huntingtin for aggregation and cytotoxicity in yeast. J. Biol. Chem. 281, 35608–35615 (2006).

    Article  CAS  Google Scholar 

  12. Duennwald, M.L., Jagadish, S., Muchowski, P.J. & Lindquist, S. Flanking sequences profoundly alter polyglutamine toxicity in yeast. Proc. Natl. Acad. Sci. USA 103, 11045–11050 (2006).

    Article  CAS  Google Scholar 

  13. Bhattacharyya, A. et al. Oligoproline effects on polyglutamine conformation and aggregation. J. Mol. Biol. 355, 524–535 (2006).

    Article  CAS  Google Scholar 

  14. Morley, J.F., Brignull, H.R., Weyers, J.J. & Morimoto, R.I. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 99, 10417–10422 (2002).

    Article  Google Scholar 

  15. Ellis, R.J. & Hartl, F.U. Principles of protein folding in the cellular environment. Curr. Opin. Struct. Biol. 9, 102–110 (1999).

    Article  CAS  Google Scholar 

  16. Gidalevitz, T., Ben-Zvi, A., Ho, K.H., Brignull, H.R. & Morimoto, R.I. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311, 1471–1474 (2006).

    Article  CAS  Google Scholar 

  17. Behrends, C. et al. Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol. Cell 23, 887–897 (2006).

    Article  CAS  Google Scholar 

  18. Kitamura, A. et al. Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat. Cell Biol. 8, 1163–1170 (2006).

    Article  CAS  Google Scholar 

  19. Tam, S., Geller, R., Spiess, C. & Frydman, J. The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat. Cell Biol. 8, 1155–1162 (2006).

    Article  CAS  Google Scholar 

  20. Leroux, M.R. & Hartl, F.U. Protein folding: versatility of the cytosolic chaperonin TRiC/CCT. Curr. Biol. 10, R260–R264 (2000).

    Article  CAS  Google Scholar 

  21. Spiess, C., Meyer, A.S., Reissmann, S. & Frydman, J. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol. 14, 598–604 (2004).

    Article  CAS  Google Scholar 

  22. Spiess, C., Miller, E.J., McClellan, A.J. & Frydman, J. Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins. Mol. Cell 24, 25–37 (2006).

    Article  CAS  Google Scholar 

  23. Hartl, F.U. and M.H.-H. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  Google Scholar 

  24. Muchowski, P.J. et al. Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl. Acad. Sci. USA 97, 7841–7846 (2000).

    Article  CAS  Google Scholar 

  25. Chen, S., Berthelier, V., Hamilton, J.B., O'Nuallain, B. & Wetzel, R. Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 41, 7391–7399 (2002).

    Article  CAS  Google Scholar 

  26. Poirier, M.A., Jiang, H. & Ross, C.A. A structure-based analysis of huntingtin mutant polyglutamine aggregation and toxicity: evidence for a compact β-sheet structure. Hum. Mol. Genet. 14, 765–774 (2005).

    Article  CAS  Google Scholar 

  27. Graham, R.K. et al. Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125, 1179–1191 (2006).

    Article  CAS  Google Scholar 

  28. Etchells, S.A. et al. The cotranslational contacts between ribosome-bound nascent polypeptides and the subunits of the hetero-oligomeric chaperonin TRiC probed by photocross-linking. J. Biol. Chem. 280, 28118–28126 (2005).

    Article  CAS  Google Scholar 

  29. Kramer, G. et al. L23 protein functions as a chaperone docking site on the ribosome. Nature 419, 171–174 (2002).

    Article  CAS  Google Scholar 

  30. Mayhew, M. et al. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature 379, 420–426 (1996).

    Article  CAS  Google Scholar 

  31. Buskiewicz, I. et al. Trigger factor binds to ribosome-signal-recognition particle (SRP) complexes and is excluded by binding of the SRP receptor. Proc. Natl. Acad. Sci. USA 101, 7902–7906 (2004).

    Article  CAS  Google Scholar 

  32. Chen, S. & Wetzel, R. Solubilization and disaggregation of polyglutamine peptides. Protein Sci. 10, 887–891 (2001).

    Article  CAS  Google Scholar 

  33. Scherzinger, E. et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. Proc. Natl. Acad. Sci. USA 96, 4604–4609 (1999).

    Article  CAS  Google Scholar 

  34. Schaffar, G. et al. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell 15, 95–105 (2004).

    Article  CAS  Google Scholar 

  35. Darnell, G., Orgel, J.P., Pahl, R. & Meredith, S.C. Flanking polyproline sequences inhibit β-sheet structure in polyglutamine segments by inducing PPII-like helix structure. J. Mol. Biol. 374, 688–704 (2007).

    Article  CAS  Google Scholar 

  36. Gao, Y., Thomas, J.O., Chow, R.L., Lee, G.H. & Cowan, N.J. A cytoplasmic chaperonin that catalyzes β-actin folding. Cell 69, 1043–1050 (1992).

    Article  CAS  Google Scholar 

  37. Lacroix, E., Viguera, A.R. & Serrano, L. Elucidating the folding problem of α-helices: local motifs, long-range electrostatics, ionic-strength dependence and prediction of NMR parameters. J. Mol. Biol. 284, 173–191 (1998).

    Article  CAS  Google Scholar 

  38. Atwal, R.S. et al. Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum. Mol. Genet. 16, 2600–2615 (2007).

    Article  CAS  Google Scholar 

  39. Bukau, B. & Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366 (1998).

    Article  CAS  Google Scholar 

  40. Rockabrand, E. et al. The first 17 amino acids of Huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis. Hum. Mol. Genet. 16, 61–77 (2007).

    Article  CAS  Google Scholar 

  41. Cattaneo, E., Zuccato, C. & Tartari, M. Normal huntingtin function: an alternative approach to Huntington's disease. Nat. Rev. Neurosci. 6, 919–930 (2005).

    Article  CAS  Google Scholar 

  42. Nagai, Y. et al. A toxic monomeric conformer of the polyglutamine protein. Nat. Struct. Mol. Biol. 14, 332–340 (2007).

    Article  CAS  Google Scholar 

  43. Liebman, S.W. Structural clues to prion mysteries. Nat. Struct. Mol. Biol. 12, 567–568 (2005).

    Article  CAS  Google Scholar 

  44. Colby, D.W. et al. Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proc. Natl. Acad. Sci. USA 101, 17616–17621 (2004).

    Article  CAS  Google Scholar 

  45. Thakur, A.K. et al. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat Struct Mol Biol (2009).

  46. Monsellier, E.C.F. Prevention of amyloid-like aggregation as a driving force of protein evolution. EMBO Rep. 8, 737–742 (2007).

    Article  CAS  Google Scholar 

  47. Cohen, E., Bieschke, J., Perciavalle, R.M., Kelly, J.W. & Dillin, A. Opposing activities protect against age-onset proteotoxicity. Science 313, 1604–1610 (2006).

    Article  CAS  Google Scholar 

  48. Bennett, E.J., Bence, N.F., Jayakumar, R. & Kopito, R.R. Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol. Cell 17, 351–365 (2005).

    Article  CAS  Google Scholar 

  49. Poirier, M.A. et al. Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J. Biol. Chem. 277, 41032–41037 (2002).

    Article  CAS  Google Scholar 

  50. Ferreyra, R.G. & Frydman, J. Purification of the cytosolic chaperonin TRiC from bovine testis. Methods Mol. Biol. 140, 153–160 (2000).

    CAS  PubMed  Google Scholar 

  51. Frydman, J. et al. Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J. 11, 4767–4778 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Frydman lab and B. Riley for advice and stimulating discussions, and R. Andino, J. Benjamin, S. Jaswal and E. Miller for useful discussions and comments on the manuscript. This work was supported by US National Institutes of Health grant GM74074 (to J.F.) and the NIH Nanomedicine Roadmap.

Author information

Authors and Affiliations

Authors

Contributions

S.T., C.S. and J.F. designed the research. S.T. performed the aggregation and cell culture experiments. C.S. performed the cross-linking experiments. W.A. cloned mutational Htt constructs and purified Htt variants. M.A.P. provided the original Htt-exon1 cysteine mutant construct. B.C. and L.J. helped with various experimental aspects. S.T., C.S. and J.F. wrote the paper.

Corresponding author

Correspondence to Judith Frydman.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 4832 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tam, S., Spiess, C., Auyeung, W. et al. The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nat Struct Mol Biol 16, 1279–1285 (2009). https://doi.org/10.1038/nsmb.1700

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1700

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing