Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Triple-helix structure in telomerase RNA contributes to catalysis

Abstract

Telomerase is responsible for replication of the ends of linear chromosomes in most eukaryotes. Its intrinsic RNA subunit provides the template for synthesis of telomeric DNA by the reverse-transcriptase (TERT) subunit and tethers other proteins into the ribonucleoprotein (RNP) complex. We report that a phylogenetically conserved triple helix within a pseudoknot structure of this RNA contributes to telomerase activity but not by binding the TERT protein. Instead, 2′-OH groups protruding from the triple helix participate in both yeast and human telomerase catalysis; they may orient the primer-template relative to the active site in a manner analogous to group I ribozymes. The role of RNA in telomerase catalysis may have been acquired relatively recently or, alternatively, telomerase may be a molecular fossil representing an evolutionary link between RNA enzymes and RNP enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The core region of the S. cerevisiae telomerase RNA has a conserved pseudoknot RNA structure.
Figure 2: The pseudoknot region of the S. cerevisiae telomerase RNA contains a triple-helix structure.
Figure 3: The triple-helix structure in TLC1 is not responsible for the binding affinity of the reverse-transcriptase subunit, Est2.
Figure 4: The triple-helix region is in close proximity to the 3′ end of the DNA substrate.
Figure 5: The 2′-OH groups in the triple-helix regions of both yeast and human telomerase RNAs are important for catalysis.
Figure 6: The 2′-OH group of A176 in the triple-helix structure of human telomerase RNA is important for catalysis.

Similar content being viewed by others

References

  1. Collins, K. The biogenesis and regulation of telomerase holoenzymes. Nat. Rev. Mol. Cell Biol. 7, 484–494 (2006).

    Article  CAS  Google Scholar 

  2. Autexier, C. & Lue, N.F. The structure and function of telomerase reverse transcriptase. Annu. Rev. Biochem. 75, 493–517 (2006).

    Article  CAS  Google Scholar 

  3. Cech, T.R. Beginning to understand the end of the chromosome. Cell 116, 273–279 (2004).

    Article  CAS  Google Scholar 

  4. Singer, M.S. & Gottschling, D.E. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266, 404–409 (1994).

    Article  CAS  Google Scholar 

  5. Lingner, J. et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561–567 (1997).

    Article  CAS  Google Scholar 

  6. Greider, C.W. & Blackburn, E.H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331–337 (1989).

    Article  CAS  Google Scholar 

  7. Chen, J.L., Blasco, M.A. & Greider, C.W. Secondary structure of vertebrate telomerase RNA. Cell 100, 503–514 (2000).

    Article  CAS  Google Scholar 

  8. Lingner, J., Hendrick, L.L. & Cech, T.R. Telomerase RNAs of different ciliates have a common secondary structure and a permuted template. Genes Dev. 8, 1984–1998 (1994).

    Article  CAS  Google Scholar 

  9. Theimer, C.A. & Feigon, J. Structure and function of telomerase RNA. Curr. Opin. Struct. Biol. 16, 307–318 (2006).

    Article  CAS  Google Scholar 

  10. Zappulla, D.C., Goodrich, K. & Cech, T.R. A miniature yeast telomerase RNA functions in vivo and reconstitutes activity in vitro. Nat. Struct. Mol. Biol. 12, 1072–1077 (2005).

    Article  CAS  Google Scholar 

  11. Lai, C.K., Miller, M.C. & Collins, K. Roles for RNA in telomerase nucleotide and repeat addition processivity. Mol. Cell 11, 1673–1683 (2003).

    Article  CAS  Google Scholar 

  12. Chen, J.L. & Greider, C.W. Determinants in mammalian telomerase RNA that mediate enzyme processivity and cross-species incompatibility. EMBO J. 22, 304–314 (2003).

    Article  Google Scholar 

  13. Tzfati, Y., Fulton, T.B., Roy, J. & Blackburn, E.H. Template boundary in a yeast telomerase specified by RNA structure. Science 288, 863–867 (2000).

    Article  CAS  Google Scholar 

  14. Mason, D.X., Goneska, E. & Greider, C.W. Stem-loop IV of Tetrahymena telomerase RNA stimulates processivity in trans. Mol. Cell. Biol. 23, 5606–5613 (2003).

    Article  CAS  Google Scholar 

  15. Zappulla, D.C. & Cech, T.R. Yeast telomerase RNA: a flexible scaffold for protein subunits. Proc. Natl. Acad. Sci. USA 101, 10024–10029 (2004).

    Article  CAS  Google Scholar 

  16. Miller, M.C. & Collins, K. Telomerase recognizes its template by using an adjacent RNA motif. Proc. Natl. Acad. Sci. USA 99, 6585–6590 (2002).

    Article  CAS  Google Scholar 

  17. Strobel, S.A. & Cech, T.R. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme. Biochemistry 32, 13593–13604 (1993).

    Article  CAS  Google Scholar 

  18. Pyle, A.M., Murphy, F.L. & Cech, T.R. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme. Nature 358, 123–128 (1992).

    Article  CAS  Google Scholar 

  19. Lin, J. et al. A universal telomerase RNA core structure includes structured motifs required for binding the telomerase reverse transcriptase protein. Proc. Natl. Acad. Sci. USA 101, 14713–14718 (2004).

    Article  CAS  Google Scholar 

  20. Dandjinou, A.T. et al. A phylogenetically based secondary structure for the yeast telomerase RNA. Curr. Biol. 14, 1148–1158 (2004).

    Article  CAS  Google Scholar 

  21. Chappell, A.S. & Lundblad, V. Structural elements required for association of the Saccharomyces cerevisiae telomerase RNA with the Est2 reverse transcriptase. Mol. Cell. Biol. 24, 7720–7736 (2004).

    Article  CAS  Google Scholar 

  22. Theimer, C.A., Blois, C.A. & Feigon, J. Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol. Cell 17, 671–682 (2005).

    Article  CAS  Google Scholar 

  23. Shefer, K. et al. A triple helix within a pseudoknot is a conserved and essential element of telomerase RNA. Mol. Cell. Biol. 27, 2130–2143 (2007).

    Article  CAS  Google Scholar 

  24. Burgin, A.B. & Pace, N.R. Mapping the active site of ribonuclease P RNA using a substrate containing a photoaffinity agent. EMBO J. 9, 4111–4118 (1990).

    Article  CAS  Google Scholar 

  25. Gavory, G., Symmons, M.F., Krishnan Ghosh, Y., Klenerman, D. & Balasubramanian, S. Structural analysis of the catalytic core of human telomerase RNA by FRET and molecular modeling. Biochemistry 45, 13304–13311 (2006).

    Article  CAS  Google Scholar 

  26. Chen, J.L. & Greider, C.W. Functional analysis of the pseudoknot structure in human telomerase RNA. Proc. Natl. Acad. Sci. USA 102, 8080–8085 (2005).

    Article  CAS  Google Scholar 

  27. Jencks, W.P. Catalysis in Chemistry and Enzymology (McGraw-Hill, New York, 1969).

    Google Scholar 

  28. Stahley, M.R. & Strobel, S.A. Structural evidence for a two-metal-ion mechanism of group I intron splicing. Science 309, 1587–1590 (2005).

    Article  CAS  Google Scholar 

  29. Strobel, S.A. & Cech, T.R. Translocation of an RNA duplex on a ribozyme. Nat. Struct. Biol. 1, 13–17 (1994).

    Article  CAS  Google Scholar 

  30. Mozdy, A.D. & Cech, T.R. Low abundance of telomerase in yeast: implications for telomerase haploinsufficiency. RNA 12, 1721–1737 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Lundblad (The Salk Institute for Biological Studies) for providing yeast strains, D. Zappulla for help with yeast telomerase assays and in vivo analysis, A. Zaug and A. Mozdy (University of Colorado, Boulder) for plasmids, Y. Tzfati for sharing results before publication and A. Berman for helpful comments on the manuscript. F.Q. is a Howard Hughes Medical Institute Fellow of the Life Sciences Research Foundation. This work was supported in part by the US National Institutes of Health grant R01 GM28039.

Author information

Authors and Affiliations

Authors

Contributions

F.Q. and T.R.C. conceived and designed the study; F.Q. performed the experiments; and F.Q. and T.R.C. analyzed the results and wrote the paper.

Corresponding author

Correspondence to Thomas R Cech.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 1748 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, F., Cech, T. Triple-helix structure in telomerase RNA contributes to catalysis. Nat Struct Mol Biol 15, 634–640 (2008). https://doi.org/10.1038/nsmb.1420

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1420

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing