Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and autoregulation of the yeast Hst2 homolog of Sir2

Abstract

Yeast Hst2 (yHst2) is a member of the silencing information regulator 2 (Sir2) family of NAD+-dependent protein deacetylases that are implicated in transcriptional silencing, DNA repair, genome stability and longevity. The X-ray crystal structure of the full-length yHst2 protein reveals a central catalytic core domain fold that is characteristic of the other Sir2 homologs, and C- and N-terminal extensions that interact with the NAD+ and acetyl-lysine substrate-binding sites, respectively, suggesting an autoregulatory function for these domains. Moreover, the N-terminal extension mediates formation of a homotrimer within the crystal lattice. Enzymatic and sedimentation equilibrium studies using deletion constructs of yHst2 support the involvement of the N- and C-terminal yHst2 regions and trimer formation in catalysis by yHst2. Together, these studies indicate that the sequence-divergent N- and C-terminal regions of the eukaryotic Sir2 proteins may have a particularly important role in their distinct substrate-binding properties, biological activities or both.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of yeast Hst2 and other Sir2 proteins.
Figure 2: Sequence alignment of Sir2 proteins.
Figure 3: NAD+-binding site of yeast Hst2.
Figure 4: The acetyl-lysine substrate-binding site and trimer formation by yeast Hst2.
Figure 5: Solution oligomerization and kinetic properties of yeast Hst2 proteins.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. de Ruijter, A.J., van Gennip, A.H., Caron, H.N., Kemp, S. & van Kuilenburg, A.B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737–749 (2003).

    Article  CAS  Google Scholar 

  2. Timmermann, S. Histone acetylation and disease. Cell. Mol. Life Sci. 58, 728–736 (2001).

    Article  CAS  Google Scholar 

  3. Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 14, 1021–1026 (2000).

    CAS  PubMed  Google Scholar 

  4. Marmorstein, R. Structure of histone deacetylases: insights into substrate recognition and catalysis. Structure 9, 1127–1133 (2001).

    Article  CAS  Google Scholar 

  5. Frye, R.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273, 793–798 (2000).

    Article  CAS  Google Scholar 

  6. Finnin, M.S. et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401, 188–193 (1999).

    Article  CAS  Google Scholar 

  7. Landry, J. et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl. Acad. Sci. USA 97, 5807–5811 (2000).

    Article  CAS  Google Scholar 

  8. Frye, R.A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 260, 273–279 (1999).

    Article  CAS  Google Scholar 

  9. Imai, S., Armstrong, C.M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

    Article  CAS  Google Scholar 

  10. Denu, J.M. Linking chromatin function with metabolic networks: Sir2 family of NAD+-dependent deacetylases. Trends Biochem. Sci. 28, 41–48 (2003).

    Article  CAS  Google Scholar 

  11. Smith, J.S. et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl. Acad. Sci. USA 97, 6658–6663 (2000).

    Article  CAS  Google Scholar 

  12. Min, J., Landry, J., Sternglanz, R. & Xu, R.M. Crystal structure of a SIR2 homolog–NAD complex. Cell 105, 269–279 (2001).

    Article  CAS  Google Scholar 

  13. Avalos, J.L. et al. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol. Cell 10, 523–535 (2002).

    Article  CAS  Google Scholar 

  14. Starai, V.J., Celic, I., Cole, R.N., Boeke, J.D. & Escalante-Semerena, J.C. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298, 2390–2392 (2002).

    Article  CAS  Google Scholar 

  15. Bell, S.D., Botting, C.H., Wardleworth, B.N., Jackson, S.P. & White, M.F. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science 296, 148–151 (2002).

    Article  CAS  Google Scholar 

  16. Vaziri, H. et al. hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159 (2001).

    Article  CAS  Google Scholar 

  17. North, B.J., Marshall, B.L., Borra, M.T., Denu, J.M. & Verdin, E. The human Sir2 ortholog, SIRT2, is a NAD+-dependent tubulin deacetylase. Mol. Cell 11, 437–444 (2003).

    Article  CAS  Google Scholar 

  18. Cockell, M.M., Perrod, S. & Gasser, S.M. Analysis of Sir2p domains required for rDNA and telomeric silencing in Saccharomyces cerevisiae. Genetics 154, 1069–1083 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cuperus, G., Shafaatian, R. & Shore, D. Locus specificity determinants in the multifunctional yeast silencing protein Sir2. EMBO J. 19, 2641–2651 (2000).

    Article  CAS  Google Scholar 

  20. Finnin, M.S., Donigian, J.R. & Pavletich, N.P. Structure of the histone deacetylase SIRT2. Nat. Struct. Biol. 8, 621–625 (2001).

    Article  CAS  Google Scholar 

  21. Bellamacina, C.R. The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins. FASEB J. 10, 1257–1269 (1996).

    Article  CAS  Google Scholar 

  22. Polevoda, B. & Sherman, F. Nα-terminal acetylation of eukaryotic proteins. J. Biol. Chem. 275, 36479–36482 (2000).

    Article  CAS  Google Scholar 

  23. Hubbard, S.R. Autoinhibitory mechanisms in receptor tyrosine kinases. Frontiers Biosci. 7, 330–340 (2002).

    Article  Google Scholar 

  24. Rojas, J.R. et al. Structure of the Tetrahymena GCN5 bound to coenzyme-A and a histone H3 peptide. Nature 401, 93–98 (1999).

    Article  CAS  Google Scholar 

  25. Yan, Y., Barlev, N.A., Haley, R.H., Berger, S.L. & Marmorstein, R. Crystal structure of yeast Esa1 suggests a unified mechanism of catalysis and substrate binding by histone acetyltransferases. Mol. Cell 6, 1195–1205 (2000).

    Article  CAS  Google Scholar 

  26. Dutnall, R.N., Tafrov, S.T., Sternglanz, R. & Ramakrishnan, V. Structure of the histone acetyltransferase Hat1: A paradigm for the GCN5-related N-acetyltransferase superfamily. Cell 94, 427–438 (1998).

    Article  CAS  Google Scholar 

  27. Marmorstein, R. Structure of SET domain proteins—a new twist on histone methylation. Trends Biochem. Sci. 28, 59–62 (2003).

    Article  CAS  Google Scholar 

  28. Xiao, B. et al. Structure and catalytic mechanism of human histone methyltransferase SET7/9. Nature 421, 652–656 (2003).

    Article  CAS  Google Scholar 

  29. Min, J., Zhang, X., Cheng, X., Grewal, S.I.S. & Xu, R.-M. Structure of the SET domain histone lysine methyltransferase Clr4. Nat. Struct. Biol. 9, 828–832 (2002).

    CAS  PubMed  Google Scholar 

  30. Trievel, R.C., Beach, B.M., Dirk, L.M.A., Houtz, R.L. & Hurley, J.H. Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell 111, 91–103 (2002).

    Article  CAS  Google Scholar 

  31. Jacobs, S.A. et al. The active site of the SET domain is constructed on a knot. Nat. Struct. Biol. 9, 833–838 (2002).

    CAS  PubMed  Google Scholar 

  32. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  33. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  34. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002).

    Article  Google Scholar 

  35. de La Fortelle, E. & Bricogne, G. SHARP: maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  36. Jones, T.A. A graphics model building and refinement system for macromolecules. J. Appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  37. Johnson, M.L., Correia, J.J., Yphantis, D.A. & Halvorson, H.R. Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys. J. 36, 575–588 (1981).

    Article  CAS  Google Scholar 

  38. Bitterman, K.J., Anderson, R.M., Cohen, H.Y., Latorre-Esteves, M. & Sinclair, D.A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 277, 45099–45107 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Guarente, L. Pillus, D. Speicher and S. Harper for useful discussions, and A. Joachimiak, R. Zhang, N. Duke and the SBC-CAT staff for access to and assistance with the 19BM beamline at APS. This work was supported by the US National Institutes of Health grants to R.M. and by a grant from the Commonwealth Universal Research Enhancement Program, Pennsylvania Department of Health, awarded to the Wistar Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronen Marmorstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, K., Chai, X., Clements, A. et al. Structure and autoregulation of the yeast Hst2 homolog of Sir2. Nat Struct Mol Biol 10, 864–871 (2003). https://doi.org/10.1038/nsb978

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb978

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing