Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lower urinary tract symptoms, benign prostatic hyperplasia and metabolic syndrome

Key Points

  • Multiple studies have investigated associations of BPH and/or lower urinary tract symptoms (LUTS) with metabolic syndrome as a whole and its components, for example visceral obesity, glucose intolerance, dyslipidaemia and hypertension

  • Although evidence for associations is conflicting for some components, metabolic syndrome as a whole is an important determinant in both the development and the progression of BPH-related LUTS (BPH–LUTS)

  • Metabolic-syndrome-related pathological changes, such as sex steroid alterations and low-grade inflammation, have been related to BPH–LUTS development and progression

  • Elevated oestrogen and oxidized LDL cholesterol levels increase inflammatory signalling of prostatic cells, stimulating chronic inflammation and proliferation, which contribute to BPH–LUTS development; androgens blunt this effect

  • Several intervention studies have demonstrated that testosterone replacement therapy can improve LUTS, but a therapeutic role of statin use for already established LUTS is still under debate

  • Promoting a healthy lifestyle, even in the asymptomatic phase, could alter a man's propensity to develop BPH–LUTS

Abstract

Epidemiological studies have shown that age is the principal unmodifiable risk factor of lower urinary tract symptoms (LUTS). Until the past decade, the process of lower urinary tract ageing was, therefore, considered unmodifiable — as ageing per se. However, the traditional dogma that BPH-related LUTS (BPH–LUTS) is an immutable consequence of old age is no longer acceptable. Results from multiple preclinical and clinical studies indicate that several modifiable, age-related metabolic aberrations (metabolic syndrome, obesity, dyslipidaemia, diabetes) are important determinants in both the development and the progression of BPH–LUTS. Metabolic syndrome and its related comorbidities, such as sex steroid alterations and low-grade inflammation, have been related to BPH–LUTS development and progression. With the correct treatment and recommended lifestyle changes, many individuals with metabolic syndrome might be able to prevent or delay the onset of metabolic-syndrome-related complications; however, whether promoting healthier lifestyles can really alter a man's propensity to develop BPH–LUTS remains to be clarified.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prevalence of metabolic syndrome by age and gender26.
Figure 2: Molecular effects of metabolic syndrome on prostate inflammatory signalling.
Figure 3: 'Two-hit' hypothesis for the pathogenesis of BPH–LUTS.

Similar content being viewed by others

References

  1. Parsons, J. K., Bergstrom, J., Silberstein, J. & Barrett-Connor, E. Prevalence and characteristics of lower urinary tract symptoms in men aged ≥80 years. Urology 72, 318–320 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Taylor, B. C. et al. Prevalence, severity, and health correlates of lower urinary tract symptoms among older men: the MrOS study. Urology 68, 804–809 (2006).

    Article  PubMed  Google Scholar 

  3. Reeves, P. et al. The current and future burden and cost of overactive bladder in five European countries. Eur. Urol. 50, 1050–1057 (2006).

    Article  PubMed  Google Scholar 

  4. Peters, T. J. et al. The International Continence Society 'Benign Prostatic Hyperplasia' Study: the botherosomeness of urinary symptoms. J. Urol. 157, 885–889 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Kupelian, V. et al. Prevalence of lower urinary tract symptoms and effect on quality of life in a racially and ethnically diverse random sample: the Boston Area Community Health (BACH) Survey. Arch. Intern. Med. 166, 2381–2387 (2006).

    Article  PubMed  Google Scholar 

  6. Irwin, D. E. et al. Population-based survey of urinary incontinence, overactive bladder, and other lower urinary tract symptoms in five countries: results of the EPIC study. Eur. Urol. 50, 1306–1314 (2006).

    Article  PubMed  Google Scholar 

  7. Coyne, K. S. et al. The prevalence of lower urinary tract symptoms (LUTS) and overactive bladder (OAB) by racial/ethnic group and age: results from OAB-POLL. Neurourol. Urodyn. 32, 230–237 (2013).

    Article  PubMed  Google Scholar 

  8. Abrams, P. et al. The standardisation of terminology of lower urinary tract function: report from the Standardisation Subcommittee of the International Continence Society. Neurourol. Urodyn. 21, 167–178 (2002).

    Article  PubMed  Google Scholar 

  9. Chapple, C. R. & Roehrborn, C. G. A shifted paradigm for the further understanding, evaluation, and treatment of lower urinary tract symptoms in men: focus on the bladder. Eur. Urol. 49, 651–658 (2006).

    Article  PubMed  Google Scholar 

  10. Boyle, P. et al. The prevalence of lower urinary tract symptoms in men and women in four centres. The UrEpik study. BJU Int. 92, 409–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Coyne, K. S. et al. The prevalence of lower urinary tract symptoms (LUTS) in the USA, the UK and Sweden: results from the Epidemiology of LUTS (EpiLUTS) study. BJU Int. 104, 352–360 (2009).

    Article  PubMed  Google Scholar 

  12. Zumrutbas, A. E. et al. Prevalence of lower urinary tract symptoms, overactive bladder and urinary incontinence in western Turkey: results of a population-based survey. Int. J. Urol. 21, 1027–1033 (2014).

    Article  PubMed  Google Scholar 

  13. Wang, Y. et al. Prevalence, risk factors and the bother of lower urinary tract symptoms in China: a population-based survey. Int. Urogynecol. J. 26, 911–919 (2015).

    Article  PubMed  Google Scholar 

  14. Alberti, K. G. et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 1640–1645 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285, 2486–2497 (2001).

  16. Alberti, K. G., Zimmet, P. & Shaw, J. Metabolic syndrome — a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet. Med. 23, 469–480 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Grundy, S. M. et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 110, 227–239 (2004).

    Article  PubMed  Google Scholar 

  18. Grundy, S. M. et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112, 2735–2752 (2005).

    Article  PubMed  Google Scholar 

  19. Ford, E. S. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care 28, 1769–1778 (2005).

    Article  PubMed  Google Scholar 

  20. Seijkens, T., Kusters, P., Chatzigeorgiou, A., Chavakis, T. & Lutgens, E. Immune cell crosstalk in obesity: a key role for costimulation? Diabetes 63, 3982–3991 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Dietrich, P. & Hellerbrand, C. Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Pract. Res. Clin. Gastroenterol. 28, 637–653 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Konrad, D. & Wueest, S. The gut–adipose–liver axis in the metabolic syndrome. Physiology (Bethesda) 29, 304–313 (2014).

    CAS  Google Scholar 

  23. McNelis, J. C. & Olefsky, J. M. Macrophages, immunity, and metabolic disease. Immunity 41, 36–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. McGill, A. T. Causes of metabolic syndrome and obesity-related co-morbidities Part 1: a composite unifying theory review of human-specific co-adaptations to brain energy consumption. Arch. Publ. Health 72, 30–38 (2014).

    Article  Google Scholar 

  25. Ford, E. S., Giles, W. H. & Dietz, W. H. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 287, 356–359 (2002).

    Article  PubMed  Google Scholar 

  26. Mozumdar, A. & Liguori, G. Persistent increase of prevalence of metabolic syndrome among U.S. adults: NHANES III to NHANES 1999–2006. Diabetes Care 34, 216–229 (2011).

    Article  PubMed  Google Scholar 

  27. Corona, G. et al. Testosterone and metabolic syndrome: a meta-analysis study. J. Sex. Med. 8, 272–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Corona, G. et al. Hypogonadism and metabolic syndrome. J. Endocrinol. Invest. 34, 557–567 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Corona, G., Vignozzi, L., Sforza, A., Mannucci, E. & Maggi, M. Obesity and late-onset hypogonadism. Mol. Cell. Endocrinol. 418, 120–133 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Rastrelli, G. et al. Development of and recovery from secondary hypogonadism in ageing men: prospective results from the EMAS. J. Clin. Endocrinol. Metab. 100, 3172–3182 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, J. C. et al. Effects of obesity on lower urinary tract symptoms in Korean BPH patients. Asian J. Androl. 11, 663–668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parsons, J. K. Benign prostatic hyperplasia and male lower urinary tract symptoms: epidemiology and risk factors. Curr. Bladder Dysfunct. Rep. 5, 212–218 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kim, J. M., Song, P. H., Kim, H. T. & Moon, K. H. Effect of obesity on prostate-specific antigen, prostate volume, and international prostate symptom score in patients with benign prostatic hyperplasia. Korean J. Urol. 52, 401–405 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dahle, S. E. et al. Body size and serum levels of insulin and leptin in relation to the risk of benign prostatic hyperplasia. J. Urol. 168, 599–604 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, S. et al. Body mass index and risk of BPH: a meta-analysis. Prostate Cancer Prostatic Dis. 15, 265–272 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Kristal, A. R. et al. Race/ethnicity, obesity, health related behaviors and the risk of symptomatic benign prostatic hyperplasia: results from the Prostate Cancer Prevention Trial. J. Urol. 177, 1395–1400 (2007).

    Article  PubMed  Google Scholar 

  37. Parsons, J. K. et al. Obesity increases and physical activity decreases lower urinary tract symptom risk in older men: the Osteoporotic Fractures in Men study. Eur. Urol. 60, 1173–1180 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Penson, D. F. et al. Obesity, physical activity and lower urinary tract symptoms: results from the Southern Community Cohort Study. J. Urol. 186, 2316–2322 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Maserejian, N. N. et al. Treatment status and progression or regression of lower urinary tract symptoms in a general adult population sample. J. Urol. 191, 107–113 (2014).

    Article  PubMed  Google Scholar 

  40. Kok, E. T. et al. Risk factors for lower urinary tract symptoms suggestive of benign prostatic hyperplasia in a community based population of healthy aging men: the Krimpen Study. J. Urol. 181, 710–716 (2009).

    Article  PubMed  Google Scholar 

  41. Wong, S. Y., Woo, J., Leung, J. C. & Leung, P. C. Depressive symptoms and lifestyle factors as risk factors of lower urinary tract symptoms in Southern Chinese men: a prospective study. Aging Male 13, 113–119 (2010).

    Article  PubMed  Google Scholar 

  42. Burke, J. P. et al. Association of anthropometric measures with the presence and progression of benign prostatic hyperplasia. Am. J. Epidemiol. 164, 41–46 (2006).

    Article  PubMed  Google Scholar 

  43. Mondul, A. M., Giovannucci, E. & Platz, E. A. A prospective study of obesity, and the incidence and progression of lower urinary tract symptoms. J. Urol. 191, 715–721 (2014).

    Article  PubMed  Google Scholar 

  44. Lotti, F. et al. Elevated body mass index correlates with higher seminal plasma interleukin 8 levels and ultrasonographic abnormalities of the prostate in men attending an andrology clinic for infertility. J. Endocrinol. Invest. 34, 336–342 (2011).

    Google Scholar 

  45. Gacci, M. et al. Central obesity is predictive of persistent storage lower urinary tract symptoms (LUTS) after surgery for benign prostatic enlargement: results of a multicentre prospective study. BJU Int. 116, 271–277 (2015).

    Article  PubMed  Google Scholar 

  46. Hammarsten, J., Hogstedt, B., Holthuis, N. & Mellstrom, D. Components of the metabolic syndrome — risk factors for the development of benign prostatic hyperplasia. Prostate Cancer Prostatic Dis. 1, 157–162 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Joseph, M. A. et al. Risk factors for lower urinary tract symptoms in a population-based sample of African-American men. Am. J. Epidemiol. 157, 906–914 (2003).

    Article  PubMed  Google Scholar 

  48. Seim, A., Hoyo, C., Ostbye, T. & Vatten, L. The prevalence and correlates of urinary tract symptoms in Norwegian men: the HUNT study. BJU Int. 96, 88–92 (2005).

    Article  PubMed  Google Scholar 

  49. Kupelian, V., Araujo, A. B., Wittert, G. A. & McKinlay, J. B. Association of moderate to severe lower urinary tract symptoms with incident type 2 diabetes and heart disease. J. Urol. 193, 581–586 (2015).

    Article  PubMed  Google Scholar 

  50. Meigs, J. B., Mohr, B., Barry, M. J., Collins, M. M. & McKinlay, J. B. Risk factors for clinical benign prostatic hyperplasia in a community-based population of healthy aging men. J. Clin. Epidemiol. 54, 935–944 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Chiu, Y. L., Kao, S., Lin, H. C., Liu, S. P. & Huang, C. Y. Benign prostatic enlargement is not associated with diabetes: a population-based study. Andrology 3, 933–936 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Parsons, J. K. Modifiable risk factors for benign prostatic hyperplasia and lower urinary tract symptoms: new approaches to old problems. J. Urol. 178, 395–401 (2007).

    Article  PubMed  Google Scholar 

  53. Nandeesha, H., Koner, B. C., Dorairajan, L. N. & Sen, S. K. Hyperinsulinemia and dyslipidemia in non-diabetic benign prostatic hyperplasia. Clin. Chim. Acta 370, 89–93 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Lotti, F. Metabolic syndrome and prostate abnormalities in male subjects of infertile couples. Asian J. Androl. 16, 295–304 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Corona, G. et al. Benign prostatic hyperplasia: a new metabolic disease of the aging male and its correlation with sexual dysfunctions. Int. J. Endocrinol. 2014, 329456 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Parsons, J. K., Bergstrom, J. & Barrett-Connor, E. Lipids, lipoproteins and the risk of benign prostatic hyperplasia in community-dwelling men. Br. J. Urol. Int. 101, 313–318 (2008).

    Article  CAS  Google Scholar 

  57. Martin, S., Lange, K., Haren, M.T., Taylor, A.W. & Wittert, G. Risk factors for progression or improvement of lower urinary tract symptoms in a prospective cohort of men. J. Urol. 191, 130–137 (2014).

    Article  PubMed  Google Scholar 

  58. Gann, P. H. et al. A prospective study of plasma hormone levels, nonhormonal factors, and development of benign prostatic hyperplasia. Prostate 26, 40–49 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Rohrmann, S., Smit, E., Giovannucci, E. & Platz, E. A. Association between markers of the metabolic syndrome and lower urinary tract symptoms in the Third National Health and Nutrition Examination Survey (NHANES III). Int. J. Obes. (Lond.) 29, 310–316 (2005).

    Article  CAS  Google Scholar 

  60. Kupelian, V. et al. Association of lower urinary tract symptoms and the metabolic syndrome: results from the Boston Area Community Health Survey. J. Urol. 182, 616–625 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Temml, C. et al. Are lower urinary tract symptoms influenced by metabolic syndrome? Urology 73, 544–548 (2009).

    Article  PubMed  Google Scholar 

  62. Park, H. K. et al. Relationship between lower urinary tract symptoms and metabolic syndrome in a community-based elderly population. Urology 72, 556–560 (2008).

    Article  PubMed  Google Scholar 

  63. Eom, C. S. et al. Metabolic syndrome and accompanying hyperinsulinemia have favorable effects on lower urinary tract symptoms in a generally healthy screened population. J. Urol. 186, 175–179 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Ohgaki, K. et al. Association between metabolic syndrome and male lower urinary tract symptoms in Japanese subjects using three sets of criteria for metabolic syndrome and International Prostate Symptom Score. Urology 77, 1432–1438 (2011).

    Article  PubMed  Google Scholar 

  65. Yang, T. K. et al. Metabolic syndrome associated with reduced lower urinary tract symptoms in middle-aged men receiving health checkup. Urology 80, 1093–1097 (2012).

    Article  PubMed  Google Scholar 

  66. Gao, Y. et al. Are metabolic syndrome and its components associated with lower urinary tract symptoms? Results from a Chinese male population survey. Urology 79, 194–201 (2012).

    Article  PubMed  Google Scholar 

  67. Kim, J. H., Doo, S. W., Yun, J. H. & Yang, W. J. Lower likelihood of having moderate-to-severe lower urinary tract symptoms in middle-aged healthy Korean men with metabolic syndrome. Urology 84, 665–669 (2014).

    Article  PubMed  Google Scholar 

  68. Gacci, M. et al. Metabolic syndrome and benign prostatic enlargement: a systematic review and meta-analysis. BJU Int. 115, 24–31 (2015).

    Article  PubMed  Google Scholar 

  69. Russo, G. I. et al. Connections between lower urinary tract symptoms related to benign prostatic enlargement and metabolic syndrome with its components: a systematic review and meta-analysis. Aging Male 14, 1–10 (2015).

    Google Scholar 

  70. Pashootan, P., Ploussard, G., Cocaul, A., de Gouvello, A. & Desgrandchamps, F. Association between metabolic syndrome and severity of lower urinary tract symptoms (LUTS): an observational study in a 4666 European men cohort. BJU Int. 116, 124–130 (2015).

    Article  PubMed  Google Scholar 

  71. De Nunzio, C. et al. Metabolic syndrome and lower urinary tract symptoms in patients with benign prostatic enlargement: a possible link to storage symptoms. Urology 84, 1181–1187 (2014).

    Article  PubMed  Google Scholar 

  72. Lee, S. H. et al. Relationship between metabolic syndrome and lower urinary tract symptoms: Hallym Aging Study. Biomed. Res. Int. 2015, 130917 (2015).

    PubMed  PubMed Central  Google Scholar 

  73. Park, J. H. et al. Body mass index, waist-to-hip ratio, and metabolic syndrome as predictors of middle-aged men's health. Korean J. Urol. 56, 386–392 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ozden, C. et al. The correlation between metabolic syndrome and prostatic growth in patients with benign prostatic hyperplasia. Eur. Urol. 51, 199–203 (2007).

    Article  PubMed  Google Scholar 

  75. Kanazawa, M. et al. Criteria and classification of obesity in Japan and Asia-Oceania. World Rev. Nutr. Diet. 94, 1–12 (2005).

    PubMed  Google Scholar 

  76. Anderson, E. A. et al. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J. Clin. Invest. 87, 2246–2252 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vignozzi, L. et al. Fat boosts, while androgen receptor activation counteracts, BPH-associated prostate inflammation. Prostate 73, 789–800 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Nathan, D. M. Diabetes: advances in diagnosis and treatment. JAMA 314, 1052–1062 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Nørby, B., Nordling, J. & Mortensen, S. Lower urinary tract symptoms in the Danish population: a population-based study of symptom prevalence, health-care seeking behavior and prevalence of treatment in elderly males and females. Eur. Urol. 47, 817–823 (2005).

    Article  PubMed  Google Scholar 

  80. Fowke, J. H., Munro, H., Signorello, L. B., Blot, W. J. & Penson, D. F. Association between socioeconomic status (SES) and lower urinary tract symptom (LUTS) severity among black and white men. J. Gen. Intern. Med. 26, 1305–1310 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Welty, F. K., Alfaddagh, A. & Elajami, T. K. Targeting inflammation in metabolic syndrome. Transl. Res. 167, 257–280 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Fibbi, B., Penna, G., Morelli, A., Adorini, L. & Maggi, M. Chronic inflammation in the pathogenesis of benign prostatic hyperplasia. Int. J. Androl. 33, 475–488 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Vignozzi, L. et al. Benign prostatic hyperplasia: a new metabolic disease? J. Endocrinol. Invest. 37, 313–322 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Crawford, E. D. et al. Baseline factors as predictors of clinical progression of benign prostatic hyperplasia in men treated with placebo. J. Urol. 175, 1422–1426 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Nickel, J. C. et al. The relationship between prostate inflammation and lower urinary tract symptoms: examination of baseline data from the REDUCE trial. Eur. Urol. 54, 1379–1384 (2008).

    Article  PubMed  Google Scholar 

  86. Schenk, J. M. et al. Biomarkers of systemic inflammation and risk of incident, symptomatic benign prostatic hyperplasia: results from the prostate cancer prevention trial. Am. J. Epidemiol. 171, 571–582 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kupelian, V. et al. Association of urological symptoms and chronic illness in men and women: contributions of symptom severity and duration — results from the BACH Survey. J. Urol. 181, 694–700 (2009).

    Article  PubMed  Google Scholar 

  88. Liao, C. H., Chung, S. D. & Kuo, H. C. Serum C-reactive protein levels are associated with residual urgency symptoms in patients with benign prostatic hyperplasia after medical treatment. Urology 78, 1373–1378 (2011).

    Article  PubMed  Google Scholar 

  89. Hung, S. F., Chung, S. D. & Kuo, H. C. Increased serum C-reactive protein level is associated with increased storage lower urinary tract symptoms in men with benign prostatic hyperplasia. PLoS ONE 9, e85588 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim, J. H., Doo, S. W., Yang, W. J., Song, Y. S. & Kwon, S. S. Association between high-sensitivity C-reactive protein and lower urinary tract symptoms in healthy Korean populations. Urology 86, 139–144 (2015).

    Article  PubMed  Google Scholar 

  91. Vignozzi, L. et al. Antiinflammatory effect of androgen receptor activation in human benign prostatic hyperplasia cells. J. Endocrinol. 214, 31–43 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Comeglio, P. et al. Opposite effects of tamoxifen on metabolic syndrome induced bladder and prostate alterations: a role for GPR30/GPER? Prostate 74, 10–28 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Penna, G. et al. Human benign prostatic hyperplasia stromal cells as inducers and targets of chronic immuno-mediated inflammation. J. Immunol. 182, 4056–4064 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Vignozzi, L. et al. Testosterone protects from metabolic syndrome-associated prostate inflammation: an experimental study in rabbit. J. Endocrinol. 212, 71–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Morelli, A. et al. Testosterone and farnesoid X receptor agonist INT-747 counteract high fat diet-induced bladder alterations in a rabbit model of metabolic syndrome. J. Steroid Biochem. Mol. Biol. 132, 80–92 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Filippi, S. et al. Testosterone partially ameliorates metabolic profile and erectile responsiveness to PDE5 inhibitors in an animal model of male metabolic syndrome. J. Sex. Med. 6, 3274–3288 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Vignozzi, L. et al. Farnesoid X receptor activation improves erectile function in animal models of metabolic syndrome and diabetes. J. Sex. Med. 8, 57–77 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Gacci, M. et al. Metabolic syndrome and lower urinary tract symptoms: the role of inflammation. Prostate Cancer Prostatic Dis. 16, 101–106 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Ehren, I., Iversen, H., Jansson, O., Adolfsson, J. & Wiklund, N. P. Localization of nitric oxide synthase activity in the human lower urinary tract and its correlation with neuroeffector responses. Urology 44, 683–687 (1994).

    Article  CAS  PubMed  Google Scholar 

  100. Haghsheno, M.-A. et al. Lower urinary tract symptoms are associated with low levels of serum serotonin, high levels of adiponectin and fasting glucose, and benign prostatic enlargement. Scand. J. Urol. 49, 155–161 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Muldoon, M. F. et al. The metabolic syndrome is associated with reduced central serotonergic responsivity in healthy community volunteers. J. Clin. Endocrinol. Metab. 91, 718–721 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Herrera, R., Hernandez-Rodrigues, J. & Medina-Serrano, J. Association of metabolic syndrome with reduced central serotonergic activity. Metab. Brain Dis. 26, 29–35 (2011).

    Article  CAS  Google Scholar 

  103. Coto, E. et al. 5-hydroxytryptamine 5-HT2A receptor and 5-hydroxytryptamine transporter polymorphisms in acute myocardial infarction. Clin. Sci. (Lond.) 104, 241–245 (2003).

    Article  CAS  Google Scholar 

  104. Yuan, X., Yamada, K., Ishiyama-Shigemoto, S., Koyama, W. & Nonaka, K. Identification of polymorphic loci in the promoter region of the serotonin 5-HT2C receptor gene and their association with obesity and type II diabetes. Diabetologia 43, 373–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Rosmond, R., Bouchard, C. & Björntorp, P. Increased abdominal obesity in subjects with a mutation in the 5-HT2A receptor gene promoter. Ann. N. Y. Acad. Sci. 967, 571–575 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Corona, G. et al. Low prolactin is associated with sexual dysfunction and psychological or metabolic disturbances in middle-aged and elderly men: the European Male Aging Study (EMAS). J. Sex. Med. 11, 240–253 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Yatham, L. N. & Steiner, M. Neuroendocrine probes of serotonergic function: a critical review. Life Sci. 53, 447–463 (1993).

    Article  CAS  PubMed  Google Scholar 

  108. Paul-Savoie, E. et al. A deficit in peripheral serotonin levels in major depressive disorder but not in chronic widespread pain. Clin. J. Pain 27, 529–534 (2011).

    Article  PubMed  Google Scholar 

  109. Wong, S. Y. et al. Lower urinary tract symptoms and depressive symptoms in elderly men. J. Affect. Disord. 96, 83–88 (2006).

    Article  PubMed  Google Scholar 

  110. Rom, M., Schatzl, G., Swietek, N., Rucklinger, E. & Kratzik, C. Lower urinary tract symptoms and depression. BJU Int. 110, E918–E921 (2012).

    Article  PubMed  Google Scholar 

  111. Zorn, B. H., Montgomery, H., Pieper, K., Gray, M. & Steers, W. D. Urinary incontinence and depression. J. Urol. 162, 82–84 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Hammarsten, J., Högstedt, B., Holthuis, N. & Mellström, D. Components of the metabolic syndrome—risk factors for the development of benign prostatic hyperplasia. Prostate Cancer Prostatic Dis. 1, 157–162 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. McVary, K. T., Rademaker, A., Lloyd, G. L. & Gann, P. Autonomic nervous system overactivity in men with lower urinary tract symptoms secondary to benign prostatic hyperplasia. J. Urol. 174, 1327–1433 (2005).

    Article  PubMed  Google Scholar 

  114. Ullrich, P. M., Lutgendorf, S. K. & Kreder, K. J. Physiologic reactivity to a laboratory stress task among men with benign prostatic hyperplasia. Urology 70, 487–491 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Cellek, S. et al. Selective nitrergic neurodegeneration in diabetes mellitus — a nitric oxide-dependent phenomenon. Br. J. Pharmacol. 128, 1804–1812 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Moul, S. & McVary, K. T. Lower urinary tract symptoms, obesity and the metabolic syndrome. Curr. Opin. Urol. 20, 7–12 (2010).

    Article  PubMed  Google Scholar 

  117. Maserejian, N. N., Kupelian, V., Miyasato, G., McVary, K. T. & McKinlay, J. B. Are physical activity, smoking and alcohol consumption associated with lower urinary tract symptoms in men or women? Results from a population based observational study. J. Urol. 188, 490–495 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Smith, D. P. et al. Relationship between lifestyle and health factors and severe lower urinary tract symptoms (LUTS) in 106,435 middle-aged and older Australian men: population-based study. PLoS ONE 9, e109278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Parsons, J. K. & Kashefi, C. Physical activity, benign prostatic hyperplasia, and lower urinary tract symptoms. Eur. Urol. 53, 1228–1235 (2008).

    Article  PubMed  Google Scholar 

  120. Platz, E. A. et al. Physical activity and benign prostatic hyperplasia. Arch. Intern. Med. 158, 2349–2356 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Khoo, J. et al. Comparing effects of low- and high-volume moderate-intensity exercise on sexual function and testosterone in obese men. J. Sex. Med. 10, 1823–1832 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Kristal, A. R. et al. Dietary patterns, supplement use, and the risk of symptomatic benign prostatic hyperplasia: results from the Prostate Cancer Prevention Trial. Am. J. Epidemiol. 167, 925–934 (2008).

    Article  PubMed  Google Scholar 

  123. Rohrmann, S., Giovannucci, E., Willett, W. C. & Platz, E. A. Fruit and vegetable consumption, intake of micronutrients, and benign prostatic hyperplasia in US men. Am. J. Clin. Nutr. 85, 523–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Suzuki, S., Platz, E. A., Kawachi, I., Willett, W. C. & Giovannucci, E. Intakes of energy and macronutrients and the risk of benign prostatic hyperplasia. Am. J. Clin. Nutr. 75, 689–697 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Maserejian, N. N., Giovannucci, E. L. & McKinlay, J. B. Dietary macronutrients, cholesterol, and sodium and lower urinary tract symptoms in men. Eur. Urol. 55, 1179–1189 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Bravi, F. et al. Food groups and risk of benign prostatic hyperplasia. Urology 67, 73–79 (2006).

    Article  PubMed  Google Scholar 

  127. Ambrosini, G. L., de Klerk, N. H., Mackerras, D., Leavy, J. & Fritschi, L. Dietary patterns and surgically treated benign prostatic hyperplasia: a case control study in Western Australia. BJU Int. 101, 853–860 (2008).

    Article  PubMed  Google Scholar 

  128. Shirazi, M., Ariafar, A., Zeyghami, S., Hosseini, M. M. & Khezri, A. A. Association of diet with prostate specific antigen and prostate volume. Nephrourol. Mon. 6, e19411 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Luke, S. et al. Effects of bariatric surgery on untreated lower urinary tract symptoms: a prospective multicentre cohort study. BJU Int. 115, 466–472 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. St Sauver, J. L. et al. Statin use and decreased risk of benign prostatic enlargement and lower urinary tract symptoms. BJU Int. 107, 443–540 (2011).

    Article  PubMed  Google Scholar 

  131. Hall, S. A. et al. Are statin medications associated with lower urinary tract symptoms in men and women? Results from the Boston Area Community Health (BACH) Survey. Ann. Epidemiol. 21, 149–155 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Mondul, A. M., Giovannucci, E. & Platz, E. A. A prospective study of statin drug use and lower urinary tract symptoms in older men. Am. J. Epidemiol. 178, 797–803 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Mills, I. W., Crossland, A., Patel, A. & Ramonas, H. Atorvastatin treatment for men with lower urinary tract symptoms and benign prostatic enlargement. Eur. Urol. 52, 503–509 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Stamatiou, K. N., Zaglavira, P., Skolarikos, A. & Sofras, F. The effects of lovastatin on conventional medical treatment of lower urinary tract symptoms with finasteride. Int. Braz. J. Urol. 34, 555–561 (2008).

    Article  PubMed  Google Scholar 

  135. Pearl, J. A. et al. Testosterone supplementation does not worsen lower urinary tract symptoms. J. Urol. 190, 1828–1833 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Francomano, D., Ilacqua, A., Bruzziches, R., Lenzi, A. & Aversa, A. Effects of 5-year treatment with testosterone undecanoate on lower urinary tract symptoms in obese men with hypogonadism and metabolic syndrome. Urology 83, 167–173 (2014).

    Article  PubMed  Google Scholar 

  137. Ko, Y. H., Moon, D. G. & Moon, K. H. Testosterone replacement alone for testosterone deficiency syndrome improves moderate lower urinary tract symptoms: one year follow-up. World J. Mens Health 31, 47–52 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Shigehara, K. et al. Androgen replacement therapy contributes to improving lower urinary tract symptoms in patients with hypogonadism and benign prostate hypertrophy: a randomised controlled study. Aging Male 14, 53–58 (2011).

    Article  PubMed  Google Scholar 

  139. Haider, A., Gooren, L. J., Padungtod, P. & Saad, F. Concurrent improvement of the metabolic syndrome and lower urinary tract symptoms upon normalisation of plasma testosterone levels in hypogonadal elderly men. Andrologia 41, 7–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Kalinchenko, S., Vishnevskiy, E. L., Koval, A. N., Mskhalaya, G. J. & Saad, F. Beneficial effects of testosterone administration on symptoms of the lower urinary tract in men with late-onset hypogonadism: a pilot study. Aging Male 11, 57–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Karazindiyanoglu, S. & Çayan, S. The effect of testosterone therapy on lower urinary tract symptoms/bladder and sexual functions in men with symptomatic late-onset hypogonadism. Aging Male 11, 146–149 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Seftel, A. D., Kathrins, M. & Niederberger, C. Critical update of the 2010 Endocrine Society Clinical Practice Guidelines for Male Hypogonadism: a systematic analysis. Mayo Clin. Proc. 90, 1104–1115 (2015).

    Article  PubMed  Google Scholar 

  143. Dean, J. D. et al. The International Society for Sexual Medicine's process of care for the assessment and management of testosterone deficiency in adult men. J. Sex. Med. 12, 1660–1686 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Zhang, L. et al. Population-based survey of the prevalence, potential risk factors, and symptom-specific bother of lower urinary tract symptoms in adult Chinese women. Eur. Urol. 68, 97–112 (2015).

    Article  PubMed  Google Scholar 

  145. Milsom, I. et al. Global prevalence and economic burden of urgency urinary incontinence: a systematic review. Eur. Urol. 65, 79–95 (2014).

    Article  PubMed  Google Scholar 

  146. Danforth, K. N., Townsend, M. K., Curhan, G. C., Resnick, N.M. & Grodstein, F. Type 2 diabetes mellitus and risk of stress, urge and mixed urinary incontinence. J. Urol. 181, 193–197 (2009).

    Article  PubMed  Google Scholar 

  147. Brown, J. S. et al. Prevalence and risk factors for urinary incontinence in women with type 2 diabetes and impaired fasting glucose: findings from the National Health and Nutrition Examination Survey (NHANES) 2001–2002. Diabetes Care 29, 1307–1312 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  148. James, R. & Hijaz, A. Lower urinary tract symptoms in women with diabetes mellitus: a current review. Curr. Urol. Rep. 15, 440 (2014).

    Article  PubMed  Google Scholar 

  149. Subak, L. L. et al. Weight loss to treat urinary incontinence in overweight and obese women. N. Engl. J. Med. 360, 481–490 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Subak, L. L. et al. Urinary incontinence before and after bariatric surgery. JAMA Intern. Med. 175, 1378–1387 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Phelan, S. et al. Weight loss prevents urinary incontinence in women with type 2 diabetes: results from the Look AHEAD trial. J. Urol. 187, 939–944 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Phelan, S. et al. Long-term prevalence and predictors of urinary incontinence among women in the Diabetes Prevention Program Outcomes Study. Int. J. Urol. 22, 206–212 (2015).

    Article  PubMed  Google Scholar 

  153. Tai, H. C. et al. Metabolic syndrome components worsen lower urinary tract symptoms in women with type 2 diabetes. J. Clin. Endocrinol. Metab. 95, 1143–1150 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Apostolidis, A. et al. Gender and age differences in the perception of bother and health care seeking for lower urinary tract symptoms: results from the hospitalised and outpatients' profile and expectations study. Eur. Urol. 56, 937–947 (2009).

    Article  PubMed  Google Scholar 

  155. Hong, G. S., Shim, B. S., Chung, W. S. & Yoon, H. Correlation between metabolic syndrome and lower urinary tract symptoms of males and females in the aspect of gender-specific medicine: a single institutional study. Korean J. Urol. 51, 631–635 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Kim, Y. H., Kim, J. J., Kim, S. M., Choi, Y. & Jeon, M. J. Association between metabolic syndrome and pelvic floor dysfunction in middle-aged to older Korean women. Am. J. Obstet. Gynecol. 205, 71.e1–71.e8 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L.V. and M.G. researched data for the article. L.V. and M.M. provided a substantial contribution to discussion of the content, wrote the article and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Linda Vignozzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignozzi, L., Gacci, M. & Maggi, M. Lower urinary tract symptoms, benign prostatic hyperplasia and metabolic syndrome. Nat Rev Urol 13, 108–119 (2016). https://doi.org/10.1038/nrurol.2015.301

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.301

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing