Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Calcium signalling in Cajal-like interstitial cells of the lower urinary tract

Key Points

  • Interstitial cell of Cajal-like cells (ICC-LC) are found throughout the lower urinary tract (LUT), where they form a functional syncytium with nerves, smooth muscle cells and recently identified PDGFRα+ cells

  • ICC-LC are believed to function as electrical pacemakers in the urethra and prostate, and in the bladder they might act as intermediary cells to transduce nerve signals to smooth muscle cells

  • The generation of intracellular Ca2+ transients originating from the release of Ca2+ from the endoplasmic reticulum (ER) seems to be fundamental to the physiological functions of ICC-LC

  • Ca2+ release from the ER involves the activation of receptors sensitive to inositol 1,4,5-triphosphate and ryanodine. Propagation of this Ca2+ signal is subsequently supported by Ca2+ influx and mitochondrial Ca2+ handling of cytosolic Ca2+ levels

  • Several translational studies have revealed that ICC-LC might serve as valuable targets for LUT dysfunctions including overactive bladder and benign prostatic hyperplasia

  • The modulation of muscle excitability in the LUT depends on Ca2+ signalling originating in ICC-LC. Further examination of these events provides an approach to evaluate therapeutic agents on LUT function

Abstract

Interstitial cells of Cajal (ICC) serve several critical physiological roles in visceral smooth muscle organs, including acting as electrical pacemakers to modulate phasic contractile activity and as intermediaries in motor neurotransmission. The major roles of ICC have been described in the gastrointestinal tract, however, ICC-like cells (ICC-LC) can also be found in other visceral organs, including those of the lower urinary tract (LUT), where they provide similar functions, acting as electrical pacemakers and as intermediary cells involved in the modulation of neurotransmission to adjacent smooth muscle cells. The physiological functions of ICC-LC, in particular their role as pacemakers, relies on their ability to generate transient and propagating intracellular Ca2+ events. The role of ICC-LC as pacemakers and neuromodulators in the LUT is increasingly apparent and the study of their intracellular Ca2+ dynamics will provide a better understanding of their role in LUT excitability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Syncytium of nerves, ICC-LC, PDGFRα+ cells and smooth muscle cells in the bladder detrusor.
Figure 2: Spontaneous Ca2+ waves in urethral ICC-LC.
Figure 3: ICC-LC mechanism of Ca2+ wave propagation.
Figure 4: Urethral ICC-LC pacemaking mechanism.
Figure 5: Schematic of prostate ICC-LC pacemaking mechanism.

Similar content being viewed by others

References

  1. Lecoin, L., Lecoin, G. & Le Douarin, N. Origin of the c-kit-positive interstitial cells in the avian bowel. Development 122, 725–733 (1996).

    CAS  PubMed  Google Scholar 

  2. Young, H. M. Embryological origin of interstitial cells of Cajal. Microsc. Res. Tech. 47, 303–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Young, H. M., Ciampoli, D., Southwell, B. R. & Newgreen, D. F. Origin of interstitial cells of Cajal in the mouse intestine. Dev. Biol. 180, 97–107 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Sanders, K. M. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 111, 492–515 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Huizinga, J. D. et al. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373, 347–349 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Torihashi, S. et al. c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell. Tiss. Res. 280, 97–111 (1995).

    CAS  Google Scholar 

  7. Ward, S. M., Burns, A. J., Torihashi, S. & Sanders, K. M. Mutation of the proto-oncogene c-kit blocks development of interstitial cells of Cajal and electrical rhythmicity in murine intestine. J. Physiol. 480, 91–97 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Horiguchi, K., Semple, G. S., Sanders, K. M. & Ward, S. M. Distribution of pacemaker function through the tunica muscularis of the canine gastric antrum. J. Physiol. 537, 237–250 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beckett, E. A., Horiguchi, K., Khoyi, M., Sanders, K. M. & Ward, S. M. Loss of enteric motor neurotransmission in the gastric fundus of Sl/Sld mice. J. Physiol. 543, 871–887 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burns, A. J., Lomax, A. E., Torihashi, S., Sanders, K. M. & Ward, S. M. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc. Natl Acad. Sci. USA 93, 12008–12013 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Ward, S. M. et al. Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons. J. Neurosci. 20, 1393–1403 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Won, K. J., Sanders, K. M. & Ward, S. M. Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. Proc. Natl Acad. Sci. USA 102, 14913–14918 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Fox, E. A., Phillips, R. J., Martinson, F. A., Baronowsky, E. A. & Powley, T. L. C-Kit mutant mice have a selective loss of vagal intramuscular mechanoreceptors in the forestomach. Anat. Embryol. 204, 11–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Sergeant, G. P., Hollywood, M. A., McCloskey, K. D., Thornbury, K. D. & McHale, N. G. Specialised pacemaking cells in the rabbit urethra. J. Physiol. 526, 359–366 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burton, L. D. et al. P2X2 receptor expression by interstitial cells of Cajal in vas deferens implicated in semen emission. Auton. Neurosci. 84, 147–161 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Exintaris, B., Klemm, M. F. & Lang, R. J. Spontaneous slow wave and contractile activity of the guinea pig prostate. J. Urol. 168, 315–322 (2002).

    Article  PubMed  Google Scholar 

  17. McCloskey, K. D. & Gurney, A. M. Kit positive cells in the guinea pig bladder. J. Urol. 168, 832–836 (2002).

    Article  PubMed  Google Scholar 

  18. Hashitani, H. & Suzuki, H. Identification of interstitial cells of Cajal in corporal tissues of the guinea-pig penis. Br. J. Pharmacol. 141, 199–204 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Uckert, S. et al. C-kit-positive multipolar cells in human penile erectile tissue: expression of connexin 43 and relation to trabecular smooth muscle cells. Georgian Med. News 180, 9–13 (2010).

    Google Scholar 

  20. Pezzone, M. A. et al. Identification of c-kit positive cells in the mouse ureter: the interstitial cells of Cajal of the urinary tract. Am. J. Physiol. Cell. Physiol. 284, F925–F929 (2003).

    Article  CAS  Google Scholar 

  21. Popescu, L. M. et al. Novel type of interstitial cell (Cajal-like) in human fallopian tube. J. Cell. Mol. Med. 9, 479–523 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dixon, R. E. et al. Chlamydia infection causes loss of pacemaker cells and inhibits oocyte transport in the mouse oviduct. Biol. Reprod. 80, 665–673 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Duquette, R. A. et al. Vimentin-positive, c-kit-negative interstitial cells in human and rat uterus: a role in pacemaking. Biol. Reprod. 72, 276–283 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Eken, A. et al. Immunohistochemical and electron microscopic examination of Cajal cells in ureteropelvic junction obstruction. Can. Urol. Assoc. 7, E311–E316 (2013).

    Article  Google Scholar 

  25. Metzger, R., Neugebauer, A., Rolle, U., Böhlig, L. & Till, H. C-kit receptor (CD117) in the porcine urinary tract. Pediatr. Surg. Int. 24, 67–76 (2008).

    Article  PubMed  Google Scholar 

  26. Lam, M., Dey, A., Lang, R. J. & Exintaris, B. Effects of imatinib mesylate on the spontaneous activity generated by the guinea-pig prostate. BJU Int. 112, E398–E405 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Hashitani, H. Interaction between interstitial cells and smooth muscles in the lower urinary tract and penis. J. Physiol. 576, 707–714 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McCloskey, K. D. Interstitial cells in the urinary bladder—localisation and function. Neurourol. Urodyn. 29, 82–87 (2010).

    Article  PubMed  Google Scholar 

  29. Kubota, Y. et al. Role of KIT-positive interstitial cells of Cajal in the urinary bladder and possible therapeutic targets for overactive bladder. Adv. Urol. 2011, 816342 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wiseman, O. B., Fowler, C. J. & Landon, D. N. The role of the human bladder lamina propia myofibroblast. BJU Int. 91, 89–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Johnston, L. et al. Altered distribution of intersitial cells and innervation in the rat urinary bladder following spinal cord injury. J. Cell. Mol. Med. 16, 1533–1543 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gray, S. M., McGeown, J. G., McMurray, G. & McClosky, K. D. Functional innervation of guinea-pig bladder interstitial cells of Cajal subtypes: neurogenic stimulation evokes in situ calcium transients. PLoS ONE 8, e53423 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, J. P., Ding, G. F. & Wang, Q. Z. Interstitial cells of Cajal mediate excitatory sympathetic neurotransmission in guinea pig prostate. Cell. Tissue Res. 352, 479–486 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Fu, W. et al. Ultrastructural features and possible functional role of kit-positive interstitial cells in the guinea pig corpus cavernosum. Int. J. Impot. Res. 23, 173–179 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Monaghan, K. P., Johnston, L. & McCloskey, K. D. Identification of PDGFRα positive population of interstitial cells in human and guinea-pig bladders. J. Urol. 188, 639–647 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Koh, B. H. et al. Platelet-derived growth factor receptor-α cells in mouse urinary bladder: a new class of interstitial cells. J. Cell. Mol. Med. 16, 691–700 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee, H., Koh, B. H., Peri, L. E., Sanders, K. M. & Koh, S. D. Functional expression of SK channels in murine detrusor PDGFRα+ cells. J. Physiol. 591, 503–513 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Lee, H., Koh, B. H., Peri, L. E., Sanders, K. M. & Koh, S. D. Purinergic inhibitory regulation of murine detrusor muscles mediated by PDGFRα+ interstitial cells. J. Physiol. 592, 1283–1293 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lang, R. J., Hashitani, H., Tonta, M. A., Parkington, H. C. & Suzuki, H. Spontaneous electrical and Ca2+ signals in typical and atypical smooth muscle cells and interstitial cell of Cajal-like cells of mouse renal pelvis. J. Physiol. 583, 1049–1068 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lang, R. J., Hashitani, H., Tonta, M. A., Suzuki, H. & Parkington, H. C. Role of Ca2+ entry and Ca2+ stores in atypical smooth muscle cell autorhythmicity in the mouse renal pelvis. Br. J. Pharmacol. 152. 1248–1259 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lang, R. J., Zoltkowski, B. Z., Hammer, J. M., Meeker, W. F. & Wendt, I. Electrical characterisation of interstitial cells of Cajal-like cells and smooth muscle cells isolated from the mouse ureteropelvic junction. J. Urol. 177, 1573–1580 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Lang, R. J. et al. Spontaneous electrical and Ca2+ signals in the mouse renal pelvis that drive pyeloureteric peristalsis. Clin. Exp. Pharmacol. Physiol. 37, 509–515 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, H. W., Baak, C. H., Lee, M. Y. & Kim, Y. C. Spontaneous contractions augmented by cholinergic and adrenergic systems in the human ureter. Korean J. Physiol. Pharmacol. 15, 37–41 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Metzger, R., Schuster, T., Till, H., Franke, F. E. & Dietz, H. G. Cajal-like cells in the upper urinary tract: comparative study in various species. Pediatr. Surg. Int. 21, 169–174 (2005).

    Article  PubMed  Google Scholar 

  45. Lang, R. J. & Klemm, M. F. Interstitial cells of Cajal-like cells in the upper urinary tract. J. Cell. Mol. Med. 9, 543–556 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lang, R. J. et al. Pyeloureteric peristalsis: role of atypical smooth muscle cells and interstitial cells of Cajal-like cells as pacemakers. J. Physiol. 576, 695–705 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Di Benedetto, A. et al. Pacemakers in the upper urinary tract. Neurourol. Urodyn. 32, 349–353 (2013).

    Article  PubMed  Google Scholar 

  48. Johnston, L., Sergeant, G. P., Hollywood, M. A., Thornbury, K. D. & McHale, N. G. Calcium oscillations in interstitial cells of the rabbit urethra. J. Physiol. 565, 449–461 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lam, H., Shigemasa, Y., Exintaris, B., Lang, R. J. & Hashitani, H. Spontaneous Ca2+ signalling of interstitial cells in the guinea pig prostate. J. Urol. 186, 2478–2486 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Hashitani, H., Yani, Y. & Suzuki, H. Role of interstitial cells and gap junctions in the transmission of spontaneous Ca2+ signals in detrusor smooth muscles of the guinea-pig urinary bladder. J. Physiol. 559, 567–581 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hashitani, H. & Lang, R. J. Functions of ICC-like cells in the urinary tract and male genital organs. J. Cell. Mol. Med. 14. 1199–1211 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Deng, J. et al. Identification of T-type calcium channels in the interstitial cells of Cajal in rat bladder. Urology 80, 1389.e1–e7 (2012).

    Article  Google Scholar 

  53. Berridge, M. J. & Dupont, G. Spatial and temporal signalling by calcium. Curr. Biol. 6, 267–274 (1994).

    Article  CAS  Google Scholar 

  54. Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell. Biol. 4, 517–529 (2000).

    Article  CAS  Google Scholar 

  55. Cunningham, R. M., Larkin, P. & McCloskey, K. D. Ultrastructural properties of interstitial cells of Cajal in the guinea pig bladder. J. Urol. 185, 1123–1131 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Berridge, M. J. & Galione, A. Cytosolic calcium oscillators. FASEB J. 2, 3074–3082 (1988).

    Article  CAS  PubMed  Google Scholar 

  57. Sneyd, J., Tsaneava-Atanasova, K., Yule, D. I., Thompson, J. L. & Shuttleworth, T. J. Control of calcium oscillations by membrane fluxes. Proc. Natl Acad. Sci. USA 101, 1392–1396 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Berridge, M. J. Smooth muscle cell calcium activation mechanisms. J. Physiol. 586, 5047–5061 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sergeant, G. P., Hollywood, M. A., McCloskey, K. D., McHale, N. G. & Thornbury, K. D. Role of IP3 in modulation of spontaneous activity in pacemaker cells of rabbit urethra. Am. J. Physiol. Cell. Physiol. 280, C1349–C1356 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Sergeant, G. P., Thornbury, K. D., McHale, N. G. & Hollywood, M. A. Characterisation of norepinephrine-evoked currents in interstitial cells isolated from the rabbit urethra. Am. J. Physiol. Cell. Physiol. 283, C885–C984 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Hollywood, M. A., Sergeant, G. P., McHale, N. G. & Thornbury, K. D. Activation of Ca2+ -activated Cl current by depolarizing steps in rabbit urethral interstitial cells. Am. J. Physiol. Cell. Physiol. 285, C327–C333 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. McHale, N. G., Hollywood, M. A., Sergeant, G. P. & Thornbury, K. D. Origin of spontaneous rhythmicity in smooth muscle. J. Physiol. 570, 23–28 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Hashitani, H. & Suzuki, H. Properties of spontaneous Ca2+ transients recorded from interstitial cells of Cajal-like cells of the rabbit urethra in situ. J. Physiol. 583, 505–519 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Drumm, B. T. et al. The role of cAMP dependent protein kinase in modulating spontaneous intracellular Ca2+ waves in interstitial cells of Cajal from the rabbit urethra. Cell. Calcium http://dx.doi.org/10.1016/j.ceca.2014.07.002.

  65. Bradley, J. E., Hollywood, M. A., McHale, N. G., Thornbury, K. D. & Sergeant, G. P. Pacemaker activity in urethral interstitial cells is not dependent on capacitive calcium entry. Am. J. Physiol. Cell. Physiol. 289, C625–C632 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Blaustein, M. P. & Lederer, W. J. Sodium / calcium exchange: Its physiological implications. Physiol. Rev. 79 763–854 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Bradley, J. E. et al. Contribution of reverse Na+-Ca2+ exchange to spontaneous activity in interstitial cells of Cajal in the rabbit urethra. J. Physiol. 574, 651–661 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Drumm, B. T. et al. The effect of high [K+]o on spontaneous Ca2+ waves in freshly isolated interstitial cells of Cajal from the rabbit urethra. Physiol. Rep. 2, e00203 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Triguero, D., Sancho, M., Garcia-Flores, M. & Garcia-Pascual, A. Presence of cyclic nucleotide-gated channels in the rat urethra and their involvement in nerve-mediated nitrergic relaxation. Am. J. Physiol. Renal Physiol. 297, F1353–F1360 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Drumm, B. T. et al. Role of Ca2+ influx and diffusion in the initiation and propagation of calcium waves in ICC freshly isolated from the rabbit urethra. Proc. Physiol. Soc. 27, PC353 (2012).

    Google Scholar 

  71. Sergeant, G. P., Bradley, J. E., Thornbury, K. D., McHale, N. G. & Hollywood, M. A. Role of mitochondria in modulation of spontaneous Ca2+ waves in freshly dispersed interstitial cells of Cajal from the rabbit urethra. J. Physiol. 586, 4631–4642 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hashitani, H., Lang, R. J. & Suzuki, H. Role of perinuclear mitochondria in the spatiotemporal dynamics of spontaneous Ca2+ waves in interstitial cells of Cajal-like cells of the rabbit urethra. Br. J. Pharmacol. 161, 680–694 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Smet, P. J., Jonavicius, J., Marshall, V. R. & De Vente, J. Distribution of nitric oxide synthase-immunoreactive nerves & identification of the cellular targets of nitric oxide in guinea-pig and human urinary bladder by cGMP immunohistochemistry. J. Neurosci. 71, 337–348 (1996).

    Article  CAS  Google Scholar 

  74. Lyons, A. D., Gardiner, T. A. & McCloskey, K. D. Kit-positive interstitial cells in the rabbit urethra: Structural relationships with nerves and smooth muscle. Br. J. Urol. 99, 687–694 (2007).

    Article  Google Scholar 

  75. Bradley, J. E. et al. Novel excitatory effects of adenosine triphosphate on contractile and pacemaker activity in rabbit urethral smooth muscle. J. Urol. 183, 801–811 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Thornbury, K. D., Hollywood, M. A., McHale, N. G. & Sergeant, G. P. Cajal beyond the gut: interstitial cells in the urinary system—towards general regulatory mechanisms of smooth muscle contractility? Acta Gastro-Enterol. Bel. 74, 536–542 (2011).

    CAS  Google Scholar 

  77. Bradley, J. E. et al. P2X receptor currents in smooth muscle cells contribute to nerve mediated contractions of rabbit urethral smooth muscle. J. Urol. 186, 745–752 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sergeant, G. P., Johnston, L., McHale, N. G., Thornbury, K. D. & Hollywood, M. A. Activation of cGMP/PKG pathway inhibits electrical activity in rabbit urethral interstitial cells of Cajal by reducing the spread of Ca2+ waves. J. Physiol. 574, 167–181 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sancho, M., Garcia-Pascual, A. & Triguero, D. Presence of the Ca2+-activated chloride channel anoctamin 1 in the urethra and its role in excitatory neurotransmission. Am. J. Physiol. Renal Physiol. 302, F390–F400 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Deng, J. et al. The effects of Glivec on the urinary bladder excitation of rats with supra sacral or sacral spinal cord transection. J. Surg. Res. 183, 598–605 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Johnston, L. et al. Morphological expression of KIT positive interstitial cells of Cajal in human bladder. J. Urol. 184, 370–377 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rusu, M. C., Folescu, R., Manoiu, V. S. & Didilescu, A. C. Suburothelial interstitial cells. Cells Tissues Organs http://dx.doi.org/10.1159/000360816.

  83. Kanai, A. et al. Origin of spontaneous activity in neonatal and adult rat bladders and its enhancement by stretch and muscarinic agonists. Am. J. Physiol. Renal Physiol. 292, F1065–F1072 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Davidson, R. A. & McCloskey, K. D. Morphology and localization of interstitial cells on the guinea-pig bladder: structural relationships with smooth muscle and neurons. J. Urol. 173, 1385–1390 (2005).

    Article  PubMed  Google Scholar 

  85. Wu, Y. et al. Expression and function of muscarinic subtype receptors in bladder interstitial cells of Cajal in rats. Urol. J. 11, 1642–1647 (2014).

    PubMed  Google Scholar 

  86. Johnston, L., Carson, C., Lyons, A. D., Davidson, R. A. & McCloskey, K. D. Cholinergic-induced Ca2+ signalling in interstitial cells of Cajal from the guinea pig bladder. Am. J. Physiol. Renal Physiol. 294, F645–F655 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim, S. O. et al. Spontaneous electrical activity of cultured interstitial cells of Cajal from mouse urinary bladder. Korean J. Physiol. Pharmacol. 17, 531–536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. McCloskey, K. D. Calcium currents in interstitial cells from the guinea-pig bladder. BJU Int. 97, 1383–1443 (2006).

    Article  CAS  Google Scholar 

  89. Zhong, X. et al. Reverse mode of the sodium/calcium exchanger subtype 3 in interstitial cells of Cajal from rat bladder. Urology 82, 254.e7–e12 (2013).

    Article  Google Scholar 

  90. Iino, S., Horiguchi, K., Horiguchi, S. & Nojyo, Y. c-Kit-negative fibroblast-like cells express platelet-derived growth factor alpha in the murine gastrointestinal musculature. Histochem. Cell. Biol. 131, 691–702 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Kurahashi, M. et al. A functional role of fibroblast-like cells in gastrointestinal smooth muscles. J. Physiol. 589, 697–710 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Baker, S. A. et al. Distribution and Ca2+ signaling of fibroblast-like cells in the murine gastric fundus. J. Physiol. 591, 6193–6208 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kurahashi, M., Mutafova-Yambolieva, V., Koh, S. D. & Sanders, K. M. Platelet-derived growth factor receptor α positive cells and not smooth muscle cells mediate purinergic hyperpolarization in murine colonic muscles. Am. J. Physiol. Cell. Physiol. http://dx.doi.org/ajpcell.00080.2014.

  94. Nguyen, D. T., Dey, A., Lang, R. J., Ventura, S. & Exintaris, B. Contractility and pacemaker cells in the prostate gland. J. Urol. 185, 347–351 (2011).

    Article  PubMed  Google Scholar 

  95. Exintaris, B., Nguyen, D. T., Lam, M. & Lang, R. J. Inositol triphosphate-dependent Ca2+ stores and mitochondria modulate slow wave activity arising from the smooth muscle cells of the guinea pig prostate gland. Br. J. Pharmacol. 156, 1098–1106 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shigemasa, Y., Lam, M., Mitsui, R. & Hashitani, H. Voltage-dependency of slow wave frequency in the guinea pig prostate. J. Urol. http://dx.doi.org/10.1016/j.juro.2014.03.034.

  97. Lang, R. J., Tonta, M. A., Takano, H. & Hashitani, H. Voltage-operated Ca2+ currents and Ca2+-activated Cl- currents in single interstitial cells of the guinea pig prostate. BJU Int. http://dx.doi.org/10.111/bju.12656.

  98. Nguyen, D. T., Lang, R. J. & Exintaris, B. α1-adrenoceptor modulation of spontaneous electrical waveforms in the guinea-pig prostate. Eur. J. Pharmacol. 608, 62–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Dey, A., Lang, R. J. & Exintaris, B. Nitric oxide signaling pathways involved in the inhibition of spontaneous activity in the guinea pig prostate. J. Urol. 187, 2254–2260 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Michel, M. C. & Vryday, W. α1, α2 and β-adrenoceptors in the urinary bladder, urethra and prostate. Br. J. Pharmacol. 147, S88–S119 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Biers, S. M., Reynard, J. M., Doore, T. & Brading, A. F. The functional effects of a c-kit tyrosine inhibitor on guinea-pig and human detrusor. BJU Int. 97, 612–616 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Vahabi, B., Sellers, D. J., Bijos, D. A. & Drake, M. J. Phasic contractions un urinary bladder from juvenile versus adult pigs. PLoS ONE 8, e58611 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gevaert, T. et al. Administration of imatinib mesylate in rats impairs the neonatal development of intramuscular interstitial cells of Cajal in bladder and results in altered contractile properties. Neurourol. Urodyn. 33, 461–468 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Sharp, K. G., Yee, K. M. & Steward, O. A re-assessment of treatment with a tyrosine kinase inhibitor (imatinib) on tissue sparing and functional recovery after spinal cord injury. Exp. Neurol. 254, 1–11 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Imura, M. et al. Regulation of cell proliferation through a KIT-mediated mechanism in benign prostatic hyperplasia. Prostate 72, 1506–1513 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Chakrabarty, B., Dey, A., Lam, M., Ventura, S. & Exintaris, B. Tamsulosin modulates, but does not abolish the spontaneous activity in the guinea pig prostate gland. Neurourol. Urodyn. http://dx.doi.org/10.1002/nau.22557.

  107. Lam, M., Dey, A., Lang, R. J. & Exintaris, B. Effects of imatinib mesylate on the spontaneous activity generated by the guinea-pig prostate. BJU Int. 112, E398–E405 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Hashitani, H., Hayase, M. & Suzuki, H. Effects of imatinib mesylate on spontaneous electrical and mechanical activity in smooth muscle of the guinea-pig stomach. Br. J. Pharmacol. 154, 451–4459 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grant support: R01 DK098388 to S.D.K. and R01 DK-57236 & P01 DK41315 to S.M.W.

Author information

Authors and Affiliations

Authors

Contributions

B.T.D. and S.M.W. researched data for the article and wrote the manuscript. B.T.D., K.-E.A. and S.M.W. made substantial contributions to discussion of content. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Bernard T. Drumm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drumm, B., Koh, S., Andersson, KE. et al. Calcium signalling in Cajal-like interstitial cells of the lower urinary tract. Nat Rev Urol 11, 555–564 (2014). https://doi.org/10.1038/nrurol.2014.241

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2014.241

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing