Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Image-guided robotic interventions for prostate cancer

Abstract

Robotic prostatectomy is a common surgical treatment for men with prostate cancer, with some studies estimating that 80% of prostatectomies now performed in the USA are done so robotically. Despite the technical advantages offered by robotic systems, functional and oncological outcomes of prostatectomy can still be improved further. Alternative minimally invasive treatments that have also adopted robotic platforms include brachytherapy and high-intensity focused ultrasonography (HIFU). These techniques require real-time image guidance—such as ultrasonography or MRI—to be truly effective; issues with software compatibility as well as image registration and tracking currently limit such technologies. However, image-guided robotics is a fast-growing area of research that combines the improved ergonomics of robotic systems with the improved visualization of modern imaging modalities. Although the benefits of a real-time image-guided robotic system to improve the precision of surgical interventions are being realized, the clinical usefulness of many of these systems remains to be seen.

Key Points

  • Precise treatment techniques are critical for improving the oncological and functional outcomes of men with prostate cancer; urologists are increasingly performing robot-assisted surgeries, which benefit from reduced tremor and improved field of view

  • Image-guided robotic surgery is expanding in use. Although MRI guidance is more accurate than ultrasonography, it is still operator-dependent and has ergonomic issues owing to the scanner design

  • MRI coupled with transrectal ultrasonography (TRUS) might be a practical alternative to MRI guidance, as it has demonstrated improved sensitivity and specificity over TRUS alone in biopsy and could be applied to robot-assisted brachytherapy and focal ablation

  • Specially designed image-guided robotic platforms for low-dose brachytherapy and prostate biopsy have demonstrated the ability to place brachytherapy seeds accurately and automatically, reducing the exposure of the operator to radiation

  • Initial clinical studies have demonstrated the ability of image guidance during robot-assisted laparoscopic prostatectomy to reduce the rate of positive surgical margins and improve the visualization of key anatomical structures

  • Novel imaging techniques such as fluorescence imaging and ultra-small particles of iron-oxide (USPIO) have opened up the possibility of image-guided targeted robotic lymph node dissection

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Augmented reality image guidance in radical prostatectomy.
Figure 2: TRUS-guided robotic systems have been developed for prostate biopsy, and could be used for guided brachytherapy.
Figure 3: Positioning of an MRI robot for prostate intervention.
Figure 4: MRI–TRUS fusion.
Figure 5: Example of system architecture, illustrating stereo video pathways, for image guidance in robot-assisted laparoscopic procedures.

Similar content being viewed by others

References

  1. Liss, M. A. et al. Robot-assisted radical prostatectomy: 5-year oncological and biochemical outcomes. J. Urol. 188, 2205–2210 (2012).

    Article  PubMed  Google Scholar 

  2. Illing, R. & Emberton, M. Sonablate-500: transrectal high-intensity focused ultrasound for the treatment of prostate cancer. Expert Rev. Med. Devices 3, 717–729 (2006).

    Article  PubMed  Google Scholar 

  3. Chaussy, C. G. & Thüroff, S. Robot-assisted high-intensity focused ultrasound in focal therapy of prostate cancer. J. Endourol. 24, 843–847 (2010).

    Article  PubMed  Google Scholar 

  4. Fichtinger, G. et al. Robotic assistance for ultrasound-guided prostate brachytherapy. Med. Image Anal. 12, 535–545 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  5. van den Bosch, M. R. et al. MRI-guided robotic system for transperineal prostate interventions: proof of principle. Phys. Med. Biol. 55, N133–140 (2010).

    Article  PubMed  Google Scholar 

  6. Abdelaziz, S. et al. Design considerations for a novel MRI compatible manipulator for prostate cryoablation. Int. J. Comput. Assist. Radiol. Surg. 6, 811–819 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Bozzini, G. et al. Focal therapy of prostate cancer: energies and procedures. Urol. Oncol. 31, 155–167 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Pondman, K. M. et al. MR-guided biopsy of the prostate: an overview of techniques and a systematic review. Eur. Urol. 54, 517–527 (2008).

    Article  PubMed  Google Scholar 

  9. Brouwer, O. R. et al. SPECT/CT and a portable gamma-camera for image-guided laparoscopic sentinel node biopsy in testicular cancer. J. Nucl. Med. 52, 551–554 (2011).

    Article  PubMed  Google Scholar 

  10. Yakar, D. et al. Predictive value of MRI in the localization, staging, volume estimation, assessment of aggressiveness, and guidance of radiotherapy and biopsies in prostate cancer. J. Magn. Reson. Imaging 35, 20–31 (2012).

    Article  PubMed  Google Scholar 

  11. Ho, H., Yuen, J. S., Mohan, P., Lim, E. W. & Cheng, C. W. Robotic transperineal prostate biopsy: pilot clinical study. Urology 78, 1203–1208 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Ho, H., Yuen, J. S. & Cheng, C. W. Robotic prostate biopsy and its relevance to focal therapy of prostate cancer. Nat. Rev. Urol. 8, 579–585 (2011).

    Article  PubMed  Google Scholar 

  13. Wei, Z., Ding, M., Downey, D. & Fenster, A. 3D TRUS guided robot assisted prostate brachytherapy. Med. Image Comput. Comput. Assist. Interv. 8, 17–24 (2005).

    PubMed  Google Scholar 

  14. Long, J.-A. et al. Development of a novel robot for transperineal needle based interventions: focal therapy, brachytherapy and prostate biopsies. J. Urol. 188, 1369–1374 (2012).

    Article  PubMed  Google Scholar 

  15. Brawer, M. K., Deering, R. E., Brown, M., Preston, S. D. & Bigler, S. A. Predictors of pathologic stage in prostatic carcinoma. The role of neovascularity. Cancer 73, 678–687 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Aigner, F. et al. Contrast-enhanced ultrasonography using cadence-contrast pulse sequencing technology for targeted biopsy of the prostate. BJU Int. 103, 458–463 (2009).

    Article  PubMed  Google Scholar 

  17. Halpern, E. J., Gomella, L. G., Forsberg, F., McCue, P. A. & Trabulsi, E. J. Contrast enhanced transrectal ultrasound for the detection of prostate cancer: a randomized, double-blind trial of dutasteride pretreatment. J. Urol. 188, 1739–1745 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mitterberger, M. et al. Comparison of contrast enhanced color Doppler targeted biopsy to conventional systematic biopsy: impact on Gleason score. J. Urol. 178, 464–468 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Frauscher, F. et al. Comparison of contrast enhanced color Doppler targeted biopsy with conventional systematic biopsy: impact on prostate cancer detection. J. Urol. 167, 1648–1652 (2002).

    Article  PubMed  Google Scholar 

  20. Strazdina, A., Krumina, G. & Sperga, M. The value and limitations of contrast-enhanced ultrasound in detection of prostate cancer. Anticancer Res. 31, 1421–1426 (2011).

    PubMed  Google Scholar 

  21. Wink, M. et al. Contrast-enhanced ultrasound and prostate cancer; a multicentre European research coordination project. Eur. Urol. 54, 982–992 (2008).

    Article  PubMed  Google Scholar 

  22. Trabulsi, E. J., Sackett, D., Gomella, L. G. & Halpern, E. J. Enhanced transrectal ultrasound modalities in the diagnosis of prostate cancer. Urology 76, 1025–1033 (2010).

    Article  PubMed  Google Scholar 

  23. Aigner, F. et al. Value of real-time elastography targeted biopsy for prostate cancer detection in men with prostate specific antigen 1.25 ng/ml or greater and 4.00 ng/ml or less. J. Urol. 184, 913–917 (2010).

    Article  PubMed  Google Scholar 

  24. Brock, M. et al. The impact of real-time elastography guiding a systematic prostate biopsy to improve cancer detection rate: a prospective study of 353 patients. J. Urol. 187, 2039–2043 (2012).

    Article  PubMed  Google Scholar 

  25. Sumura, M. et al. Initial evaluation of prostate cancer with real-time elastography based on step-section pathologic analysis after radical prostatectomy: a preliminary study. Int. J. Urol. 14, 811–816 (2007).

    Article  PubMed  Google Scholar 

  26. Yan, Z. et al. Role of transrectal real-time tissue elastography in the diagnosis of prostate cancer. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 33, 175–179 (2011).

    PubMed  Google Scholar 

  27. Nelson, E. D., Slotoroff, C. B., Gomella, L. G. & Halpern, E. J. Targeted biopsy of the prostate: the impact of color Doppler imaging and elastography on prostate cancer detection and Gleason score. Urology 70, 1136–1140 (2007).

    Article  PubMed  Google Scholar 

  28. Pozzi, E. et al. The role of the elastography in the diagnosis of prostate cancer: a retrospective study on 460 patients. Arch. Ital. Urol. Androl. 84, 151–154 (2012).

    PubMed  Google Scholar 

  29. Kapoor, A., Kapoor, A., Mahajan, G. & Sidhu, B. S. Real-time elastography in the detection of prostate cancer in patients with raised PSA level. Ultrasound Med. Biol. 37, 1374–1381 (2011).

    Article  PubMed  Google Scholar 

  30. Zhu, Y. et al. Prostate cancer detection with real-time elastography using a bi-plane transducer: comparison with step section radical prostatectomy pathology. World J. Urol. (in press).

  31. Salomon, G. et al. Evaluation of prostate cancer detection with ultrasound real-time elastography: a comparison with step section pathological analysis after radical prostatectomy. Eur. Urol. 54, 1354–1362 (2008).

    Article  PubMed  Google Scholar 

  32. Brock, M. et al. Multiparametric ultrasound of the prostate: adding contrast enhanced ultrasound to real-time elastography to detect histopathologically confirmed cancer. J. Urol. 189, 93–98 (2013).

    Article  PubMed  Google Scholar 

  33. Walz, J. et al. Identification of the prostate cancer index lesion by real-time elastography: considerations for focal therapy of prostate cancer. World J. Urol. 29, 589–594 (2011).

    Article  PubMed  Google Scholar 

  34. Pallwein, L. et al. Real-time elastography for detecting prostate cancer: preliminary experience. BJU Int. 100, 42–46 (2007).

    Article  PubMed  Google Scholar 

  35. Simmons, L. A. et al. Detection, localisation and characterisation of prostate cancer by prostate HistoScanning(). BJU Int. 110, 28–35 (2012).

    Article  PubMed  Google Scholar 

  36. Harvey, C. J., Pilcher, J., Richenberg, J., Patel, U. & Frauscher, F. Applications of transrectal ultrasound in prostate cancer. Br. J. Radiol. 8, S3–S17 (2012).

    Article  Google Scholar 

  37. Beyersdorff, D. et al. Patients with a history of elevated prostate-specific antigen levels and negative transrectal US-guided quadrant or sextant biopsy results: value of MR imaging. Radiology 224, 701–706 (2002).

    Article  PubMed  Google Scholar 

  38. Riches, S. F. et al. MRI in the detection of prostate cancer: combined apparent diffusion coefficient, metabolite ratio, and vascular parameters. AJR Am. J. Roentgenol. 193, 1583–1591 (2009).

    Article  PubMed  Google Scholar 

  39. Krieger, A. et al. Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans. Biomed. Eng. 52, 306–313 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Krieger, A. et al. An MRI-compatible robotic system with hybrid tracking for MRI-guided prostate intervention. IEEE Trans. Biomed. Eng. 58, 3049–3060 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stoianovici, D. et al. “MRI Stealth” robot for prostate interventions. Minim. Invasive Ther. Allied Technol. 16, 241–248 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Goldenberg, A. A. et al. Robotic system for closed-bore MRI-guided prostatic interventions. IEEE ASME Trans. Mechatron. 13, 374–379 (2008).

    Article  Google Scholar 

  43. Zangos, S. et al. MR-compatible assistance system for biopsy in a high-field-strength system: initial results in patients with suspicious prostate lesions. Radiology 259, 903–910 (2011).

    Article  PubMed  Google Scholar 

  44. Yakar, D. et al. Feasibility of a pneumatically actuated MR-compatible robot for transrectal prostate biopsy guidance. Radiology 260, 241–247 (2011).

    Article  PubMed  Google Scholar 

  45. Seifabadi, R. & Cho, N. Accuracy study of a robotic system for MRI-guided prostate needle placement. Int. J. Med. Robot. http://dx.doi.org/10.1002/rcs.1440.

  46. Su, H. et al. High-field MRI-compatible needle placement robot for prostate interventions. Stud. Health Technol. Inform. 163, 623–629 (2011).

    PubMed  PubMed Central  Google Scholar 

  47. Elhawary, H. et al. Robotic system for transrectal biopsy of the prostate: real-time guidance under MRI. IEEE Eng. Med. Biol. Mag. 29, 78–86 (2010).

    Article  PubMed  Google Scholar 

  48. Delongchamps, N. B. et al. Pre-biopsy Magnetic Resonance Imaging and prostate cancer detection: comparison of random and MRI-targeted biopsies using three different techniques of MRI-TRUS image registration. J. Urol. 189, 493–499 (2012).

    Article  PubMed  Google Scholar 

  49. Mouraviev, V. et al. The feasibility of multiparametric magnetic resonance imaging for targeted biopsy using novel navigation systems to detect early stage of prostate cancer: the preliminary experience. J. Endourol. http://dx.doi.org/10.1089/end.2012.0215.

  50. Ukimura, O. et al. Technique for a hybrid system of real-time transrectal ultrasound with preoperative magnetic resonance imaging in the guidance of targeted prostate biopsy. Int. J. Urol. 17, 890–893 (2010).

    Article  PubMed  Google Scholar 

  51. Xu, S. et al. Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies. Comput. Aided Surg. 13, 255–264 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hu, J. C. et al. Perioperative complications of laparoscopic and robotic assisted laparoscopic radical prostatectomy. J. Urol. 175, 541–546 (2006).

    Article  PubMed  Google Scholar 

  53. Miller, J., Smith, A., Kouba, E., Wallen, E. & Pruthi, R. S. Prospective evaluation of short-term impact and recovery of health related quality of life in men undergoing robotic assisted laparoscopic radical prostatectomy versus open radical prostatectomy. J. Urol. 178, 854–858; discussion 859 (2007).

    Article  PubMed  Google Scholar 

  54. Tewari, A., Srivasatava, A. & Menon, M. A prospective comparison of radical retropubic and robot-assisted prostatectomy: experience in one institution. BJU Int. 92, 205–210 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Simpfendörfer, T. et al. Augmented reality visualization during laparoscopic radical prostatectomy. J. Endourol. 25, 1841–1845 (2011).

    Article  PubMed  Google Scholar 

  56. Cohen, D. et al. Augmented reality image guidance in minimally invasive prostatectomy. Lect. Notes Comput. Sci. 6367, 101–110 (2010).

    Article  Google Scholar 

  57. Teber, D. et al. In-vitro evaluation of a soft-tissue navigation system for laparoscopic prostatectomy. J. Endourol. 24, 1487–1491 (2010).

    Article  PubMed  Google Scholar 

  58. Ukimura, O., Magi-Galluzzi, C. & Gill, I. S. Real-time transrectal ultrasound guidance during laparoscopic radical prostatectomy: impact on surgical margins. J. Urol. 175, 1304–1310 (2006).

    Article  PubMed  Google Scholar 

  59. Han, M. et al. Tandem-robot assisted laparoscopic radical prostatectomy to improve the neurovascular bundle visualization: a feasibility study. Urology 77, 502–506 (2011).

    Article  PubMed  Google Scholar 

  60. Hung, A. J. et al. Robotic transrectal ultrasonography during robot-assisted radical prostatectomy. Eur. Urol. 62, 341–348 (2012).

    Article  PubMed  Google Scholar 

  61. Long, J.-A. et al. Real-time robotic transrectal ultrasound navigation during robotic radical prostatectomy: initial clinical experience. Urology 80, 608–613 (2012).

    Article  PubMed  Google Scholar 

  62. Van der Poel, H. G., De Blok, W., Bex, A., Meinhardt, W. & Horenblas, S. Peroperative transrectal ultrasonography-guided bladder neck dissection eases the learning of robot-assisted laparoscopic prostatectomy. BJU Int. 102, 849–852 (2008).

    Article  PubMed  Google Scholar 

  63. Renard-Penna, R. et al. Accuracy of high resolution (1.5 tesla) pelvic phased array magnetic resonance imaging (MRI) in staging prostate cancer in candidates for radical prostatectomy: results from a prospective study. Urol. Oncol. 31, 448–454 (2011).

    Article  PubMed  Google Scholar 

  64. Bloch, B. N. et al. Prediction of prostate cancer extracapsular extension with high spatial resolution dynamic contrast-enhanced 3-T MRI. Eur. Radiol. 22, 2201–2210 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Thompson, S. A., Penney, G. P., Hawkes, D. J. & Dasgupta, P. Bone segmentation using a CT based statistical shape model for image guidance in robot assisted prostatectomy [abstract p77]. BJU Int. 101 (Suppl. s5), 40 (2008).

    Google Scholar 

  66. Ukimura, O. & Gill, I. S. Imaging-assisted endoscopic surgery: Cleveland Clinic experience. J. Endourol. 22, 803–810 (2008).

    Article  PubMed  Google Scholar 

  67. Janetschek, G. Can sentinel pelvic lymph node dissection replace extended pelvic lymph node dissection in patients with prostate cancer? Nat. Clin. Pract Urol. 4, 636–637 (2007).

    Article  PubMed  Google Scholar 

  68. Khoder, W. Y. et al. Risk factors for pelvic lymphoceles post-radical prostatectomy. Int. J. Urol. 18, 638–643 (2011).

    PubMed  Google Scholar 

  69. van der Poel, H. G., Tillier, C., De Blok, W. & Van Muilekom, E. Extended nodal dissection reduces sexual function recovery after robot-assisted laparoscopic prostatectomy. J. Endourol. 26, 1192–1198 (2012).

    Article  PubMed  Google Scholar 

  70. Brouwer, O. R. et al. Image navigation as a means to expand the boundaries of fluorescence-guided surgery. Phys. Med. Biol. 57, 3123–3136 (2012).

    Article  PubMed  Google Scholar 

  71. Meinhardt, W. et al. Laparoscopic sentinel lymph node biopsy for prostate cancer: the relevance of locations outside the extended dissection area. Prostate Cancer 2012, 751753 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Harisinghani, M. et al. Noninvasive detection of clinically occult lymph-node metastasesin prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003).

    Article  PubMed  Google Scholar 

  73. Heesakkers, R. A. et al. MRI with a lymph-node-specific contrast agent as an alternative to CT scan and lymph-node dissection in patients with prostate cancer: a prospective multicohort study. Lancet Oncol. 9, 850–856 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Podder, T., Buzurovic, I., Huang, K. & Yu, Y. MIRAB: an image-guided multichannel robot for prostate brachytherapy. Bodine J. 3, 39 (2010).

    Google Scholar 

  75. Yu, Y. et al. Robotic system for prostate brachytherapy. Comput. Aided Surg. 12, 366–370 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Salcudean, S. E., Prananta, T. D., Morris, W. J. & Spadinger, I. A robotic needle guide for prostate brachytherapy. IEEE Int. Conf. Robot. Autom. 2975–2981 (2008).

  77. Fichtinger, G. et al. System for robotically assisted prostate biopsy and therapy with intraoperative CT guidance. Acad. Radiol. 9, 60–74 (2002).

    Article  PubMed  Google Scholar 

  78. Cunha, J. A. et al. Toward adaptive stereotactic robotic brachytherapy for prostate cancer: demonstration of an adaptive workflow incorporating inverse planning and an MR stealth robot. Minim. Invasive Ther. Allied Technol. 19, 189–202 (2011).

    Article  Google Scholar 

  79. Karavitakis, M., Ahmed, H. U., Abel, P. D., Hazell, S. & Winkler, M. H. Tumor focality in prostate cancer: implications for focal therapy. Nat. Rev. Clin. Oncol. 8, 48–55 (2011).

    Article  PubMed  Google Scholar 

  80. Ahmed, H. U., Arya, M., Freeman, A. & Emberton, M. Do low-grade and low-volume prostate cancers bear the hallmarks of malignancy? Lancet Oncol. 13, e509–e517 (2012).

    Article  PubMed  Google Scholar 

  81. Jolesz, F. A. MRI-guided focused ultrasound surgery. Ann. Rev. Med. 60, 417–430 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Hynynen, K. MRIgHIFU: a tool for image-guided therapeutics. J. Magn. Reson. Imaging 34, 482–493 (2011).

    Article  PubMed  Google Scholar 

  83. Davies, B. L., Harris, S. J. & Dibble, E. Brachytherapy--an example of a urological minimally invasive robotic procedure. Int. J. Med. Robotics Comput. 1, 88–96 (2004).

    Article  CAS  Google Scholar 

  84. Schneider, C. M., Okamura, A. M. & Fichtinger, G. A robotic system for transrectal needle insertion into the prostate with integrated ultrasound. IEEE Int. Conf. Robot. Autom. 1, 365–370 (2004).

    Google Scholar 

  85. Phee, L. et al. Ultrasound guided robotic system for transperineal biopsy of the prostate. IEEE Int. Conf. Robot. Autom. 1315–1320 (2005).

  86. Bassan, H. S., Patel, R. V. & Moallem, M. A novel manipulator for percutaneous needle insertion: design and experimentation. IEEE ASME Trans. Mechatron. 14, 746–761 (2009).

    Article  Google Scholar 

  87. Muntener, M. et al. Transperineal prostate intervention: robot for fully automated MR imaging--system description and proof of principle in a canine model. Radiology 247, 543–549 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  88. DiMaio, S. P. et al. Robot-assisted needle placement in open MRI: system architecture, integration and validation. Comput. Aided Surg. 12, 15–24 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Fischer, G. S. et al. MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEE ASME Trans. Mechatron. 13, 295–305 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Su, H. et al. A MRI-guided concentric tube continuum robot with piezoelectric actuation: a feasibility study. IEEE Int. Conf. Robot. Autom. 1939–1945 (2012).

  91. Fitzpatrick, J. M., Hill, D. L. & Maurer, C. R. Jr in Handbook of Medical Imaging, Volume 2. Medical Image Processing and Analysis (eds Fitzpatrick, J. M. & Sonka, M.) 447–513 (SPIE Press Monograph, 2000).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. N. Sridhar and A. Hughes-Hallett contributed equally to this manuscript. A. N. Sridhar and A. Hughes-Hallett researched the data for the article. A. N. Sridhar, A. Hughes-Hallett, E. K. Mayer and P. J. Pratt discussed the article's content, after which A. N. Sridhar, A. Hughes-Hallett and E. K. Mayer wrote the manuscript. All authors edited the manuscript before submission.

Corresponding author

Correspondence to Erik K. Mayer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sridhar, A., Hughes-Hallett, A., Mayer, E. et al. Image-guided robotic interventions for prostate cancer. Nat Rev Urol 10, 452–462 (2013). https://doi.org/10.1038/nrurol.2013.129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2013.129

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer