Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNAs as putative mediators of treatment response in prostate cancer

Abstract

MicroRNAs (miRNAs) are an abundant class of noncoding RNAs that function to regulate post-transcriptional gene expression, predominantly by translational repression. In addition to their role in prostate cancer initiation and progression, recent evidence suggests that miRNAs might also participate in treatment response across a range of therapies including radiation treatment, chemotherapy and androgen suppression. The mechanism of this regulation is thought to be multifactorial and is currently poorly understood. To date, only a small number of studies have examined the functional role of miRNAs in response to prostate cancer treatment. Elucidating the role of miRNAs in treatment response following radiotherapy, chemotherapy and androgen suppression will provide new avenues of investigation for the development of novel therapies for the treatment of prostate cancer.

Key Points

  • MicroRNAs (miRNAs) are an abundant class of noncoding molecules that post-transcriptionally regulate gene expression

  • miRNAs have been implicated in gene expression in prostate cancer, and can putatively be used as diagnostic and prognostic biomarkers in association with well-described markers, such as PSA

  • miRNAs have been suggested to be involved in modulating response of prostate cancer to treatment, including androgen suppression, chemotherapy and radiation

  • The vast majority of studies examining the role of miRNAs in prostate cancer treatment response have focused on prostatic cell lines; however, a number of studies on clinical samples have recently been reported

  • More clinical studies are required before miRNAs can be used as response biomarkers in prostate cancer

  • miRNA technology remains an exciting tool for both the elucidation of the mechanisms by which prostate cancer cells are inherently treatment resistant, and as a novel method of overcoming this resistance

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The miRNA processing pathway.

Similar content being viewed by others

References

  1. Ferlay, J. et al. Estimates of the cancer incidence and mortality in Europe in 2006. Ann. Oncol. 18, 581–592 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Hsing, H. W. et al. International trends and patterns of prostate cancer incidence and mortality. Int. J. Cancer 85, 60–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Marberger, M. Prostate cancer 2008: challenges in diagnosis and management. Eur. Urol. Suppl. 8, 89–96 (2009).

    Article  Google Scholar 

  4. Johansson, J. E. et al. Natural history of early localized prostate cancer. JAMA 291, 2713–2719 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Eggener, S. E. et al. Predicting 15-year prostate cancer specific mortality after radical prostatectomy. J. Urol. 185, 869–875 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Catton, C. Post-operative radiotherapy following radical prostatectomy. EAU Update Series 3, 107–116 (2005).

    Article  Google Scholar 

  7. Karim-Kos, H. E. et al. Recent trends of cancer in Europe: a combined approach of incidence, survival and mortality for 17 cancer sites since the 1990's. Eur. J. Cancer 44, 1345–1389 (2008).

    Article  PubMed  Google Scholar 

  8. Scher, H. I. et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J. Clin. Oncol. 26, 1148–1159 (2008).

    Article  PubMed  Google Scholar 

  9. Ryan, C. J. & Tindall, D. J. Androgen receptor rediscovered: the new biology and targeting the androgen receptor therapeutically. J. Clin. Oncol. 29, 3651–3658 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Benecchi, L., Pieri, A. M. & Pastizzano, C. Optimal measure of PSA kinetics to identify prostate cancer. Urology 71, 390–394 (2008).

    Article  PubMed  Google Scholar 

  11. De la Taille, A. et al. Clinical evaluation of the PCA3 assay in guiding initial biopsy decisions. J. Urol. 185, 2119–2125 (2011).

    Article  PubMed  Google Scholar 

  12. Lilja, H., Ulmert, D. & Vickers, A. J. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat. Rev. Cancer 8, 268–274 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Heneghan, H. M., Miller, N. & Kerin, M. J. MiRNAs as biomarkers and therapeutic targets in cancer. Curr. Opin. Pharmacol. 10, 543–550 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Ambros, V. The functions of animal microRNAs. Nature 431, 356–363 (2004).

    Article  CAS  Google Scholar 

  15. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Mitchell, P. S. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Catto, J. W. F. et al. MicroRNA in prostate, bladder and kidney cancer: a systematic review. Eur. Urol. 59, 671–681 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Sevli, S. et al. The function of microRNAs, small but potent molecules, in human prostate cancer. Prostate Cancer Prostatic Dis. 13, 208–217 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Pang, Y., Young, C. Y. & Yuan, H. MicroRNAs and prostate cancer. Biochem. Biophys. Acta 42, 363–369 (2010).

    CAS  Google Scholar 

  20. Ma, J., Dong, C. & Ji, C. MicroRNA and drug resistance. Cancer Gene Ther. 17, 523–531 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Weidhaas, J. B. et al. MicroRNAs as potential targets to alter resistance to cytotoxic anticancer therapy. Cancer Res. 67, 11111–11116 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Crosby, M. E. et al. MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res. 69, 1221–1229 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ghosh, G. et al. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-1α isoforms and promotes angiogenesis. J. Clin. Invest. 120, 4141–4154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kwak, P. B. & Tomari, Y. The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat. Struct. Mol. Biol. 19, 145–151 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Gandellini, P., Folini, M. & Zaffaroni, N. Towards the definition of prostate cancer-related microRNAs: where are we now? Trends Mol. Med. 15, 381–390 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Mirzenami, A. H. F. et al. MicroRNAs: key players in carcinogenesis and novel therapeutic targets. Eur. J. Surg. Oncol. 35, 339–347 (2009).

    Article  Google Scholar 

  27. Esau, C. C. & Monia, B. P. Therapeutic potential for microRNAs. Adv. Drug Deliv. Rev. 59, 101–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. TargetScan Human Release 6.1, http://www.targetscan.org/ (2012).

  29. Chandra, V. et al. MTar: a computational microRNA target prediction architecture for human transcriptome. BMC Bioinformatics 11, S2 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rehmsmeier, M. et al. Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilson, M. et al. The microRNA.org resource: targets and expression. Nucleic Acids Res. 36, D149–D153 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Thomas, M., Lieberman, J. & Lal, A. Desperately seeking microRNA targets. Nat. Struct. Mol. Biol. 17, 1169–1173 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Bartels, C. L. & Tsongalis, G. J. MicroRNAs: novel biomarkers for human cancer. Clin. Chem. 55, 623–631 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Jerónimo, C. et al. Epigenetics in prostate cancer: biologic and clinical relevance. Eur. Urol. 60, 753–766 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Tsao, C. K. et al. Clinical development of carbazitaxel for the treatment of castration-resistant prostate cancer. Clin. Med. Insights Oncol. 5, 163–169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reebye, V. et al. Intracellular adaptor molecules and AR signaling in the tumour microenvironment. Cell Signal. 23, 1017–1021 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Perry, A. S. et al. In silico mining identifies IGFBP3 as a novel target of methylation in prostate cancer. Br. J. Cancer 96, 1587–1594 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Esteller, M. Epigenetics in cancer. N. Engl. J. Med. 358, 1148–1159 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Tan, D. S. et al. Anti-cancer drug resistance: understanding the mechanisms through the use of integrative genomics and functional RNA interference. Eur. J. Cancer 46, 2166–2177 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Fojo, T. Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist. Updat. 10, 59–67 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Baylin, S. DNA methylation and gene silencing in cancer. Clin. Pract. Oncol. 2, S4–S11 (2005).

    Article  CAS  Google Scholar 

  42. Murphy, T. M., Perry, A. S. & Lawler, M. The emergence of DNA methylation as a key modulator of aberrant cell death in prostate cancer. Endocr. Relat. Cancer 15, 11–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Perry, A. S. et al. The emerging roles of DNA methylation in the clinical management of prostate cancer. Endocr. Relat. Cancer 13, 357–377 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Fraga, M. F. & Esteller, M. Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle 4, 1377–1381 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Cao, P. et al. MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Molec. Cancer 9, 108 (2010).

    Article  CAS  Google Scholar 

  46. Bryant, R. J. et al. The polycomb group protein EZH2 regulates actin polymerization in human prostate cancer cells. Prostate 68, 255–263 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Varambally, S. et al. Genomic loss of microRNA-101 leads to over expression of histone methyltransferase EZH2 in cancer. Science 322, 1695–1699 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Friedman, J. M. et al. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res. 69, 2623–2629 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Bohrer, L. R. et al. Androgens suppress EZH2 expression via retinoblastoma (RB) and p130-dependent pathways: a potential mechanism of androgen refractory progression of prostate cancer. Endocrinology 151, 5136–5145 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vrba, L. et al. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS ONE 5, E8697 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kong, D. et al. MiR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion and invasion of prostate cancer cells. Stem Cells 27, 1712–1721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu, Y. et al. A miR-200b/200c/429-binding site polymorphism in the 3′ untranslated region of the AP-2α gene is associated with cisplatin resistance. PLoS ONE 6, e29043 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sylvestre, Y. et al. An E2F/miR20a auto-regulatory feedback loop. J. Biol. Chem. 282, 2135–2143 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Ambs, S. et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res. 68, 6162–6170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gandellini, P. et al. MiR-205 exerts tumour-suppressive functions in human prostate through down-regulation of protein kinase C epsilon. Cancer Res. 69, 2287–2295 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Galardi, S. et al. MiR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27 (kip1). J. Biol. Chem. 282, 23716–27324 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Bonci, D. et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat. Med. 14, 1271–1277 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Hussein, M. et al. Prostate-specific antigen progression predicts overall survival in patients with metastatic prostate cancer: data from Southwest Oncology Group Trials 9346 (Intergroup Study 0162) and 9916. J. Clin. Oncol. 27, 2450–2456 (2009).

    Article  Google Scholar 

  59. Petrylak, D. P. et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N. Engl. J. Med. 351, 1513–1520 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Chen, C. D. et al. Molecular determinants of resistance to anti-androgen therapy. Nat. Med. 10, 33–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Yu, J. et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17, 443–54 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Attar, R. M., Takimoto, C. H. & Gottardis, M. M. Castration-resistant prostate cancer: locking up the molecular escape routes. Clin. Cancer Res. 15, 3251–3255 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Ribas, J. et al. MiR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res. 69, 7165–7169 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang, C. H. et al. IFN induces miR-21 through a signal transducer and activator of transcription 3-dependent pathway as a suppressive negative feedback on IFN-induced apoptosis. Cancer Res. 70, 8108–8116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Folini, M. et al. MiR-21: an oncomir on strike in prostate cancer. Molec. Cancer 9, 12–23 (2010).

    Article  CAS  Google Scholar 

  66. Li, T. et al. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem. Biophys. Res. Commun. 383, 280–285 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Lu, Z. et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27, 4373–4379 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Shi, G. H. et al. Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen-independent prostate cancer PC3 cells. Acta Pharmacol. Sin. 31, 867–873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shi, X. B. et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc. Natl Acad. Sci. USA 104, 19983–19988 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Shi, X. B. et al. MiR-125b promotes growth of prostate cancer xenograft tumor through targeting pro-apoptotic genes. Prostate 71, 538–549 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Lin, S. L., Chiang, A., Chang, D. & Ying, S. Y. Loss of mir-146a function in hormone-refractory prostate cancer. RNA 14, 417–424 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sikand, K. et al. miR 488* inhibits androgen receptor expression in prostate carcinoma cells. Int. J. Cancer 129, 810–819 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Sun, T. et al. The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res. 69, 3356–3363 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fujita, Y. et al. MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J. Biol. Chem. 285, 19076–19084 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Murata, T. et al. MiR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis. 13, 356–361 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Sikand, K. et al. miR 488* inhibits androgen receptor expression in prostate carcinoma cells. Int. J. Cancer 129, 810–819 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Epis, M. R. et al. MiR-331-3p regulates ERBB2 expression and androgen receptor signaling in prostate cancer. J. Biol. Chem. 284, 24696–24704 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. De Bono, J. S. et al. Open-label phase II study evaluating the efficacy and safety of two doses of pertuzumab in castrate chemotherapy-naïve patients with hormone-refractory prostate cancer. J. Clin. Oncol. 25, 257–262 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Waltering, K. K. et al. Androgen regulation of micro-RNAs in prostate cancer. Prostate 71, 604–614 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Ma, S. et al. MicroRNA-616 induces androgen-independent growth of prostate cancer cells by suppressing expression of tissue factor pathway inhibitor TFPI-2. Cancer Res. 71, 583–592 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Jalava, S. E., Urbanucci, A. & Latonen, L. Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene http://dx.doi.org/10.1038/onc.2011.624.

  82. Tannock, I. F. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351, 1502–1512 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Kojima, K. et al. MiR-34a attenuates paclitaxel-resistance of hormone-refractory prostate cancer PC3 cells through direct and indirect mechanisms. Prostate 70, 1501–1512 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, H. L. et al. Serum miRNA-21 elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based therapy. Prostate 71, 326–331 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Xu, B. et al. Mir-143 decreases prostate cancer cell proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol. Cell. Biochem. 350, 207–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Gan, L. et al. Resistance to docetaxel-induced apoptosis in prostate cancer by p38/p53/p21 signaling. Prostate 71, 1158–1166 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. McKenzie, S. & Kyprianou, N. Apoptosis evasion: The role of survival pathways in prostate cancer progression and therapeutic resistance. J. Cell Biochem. 97, 18–32 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fujita, Y. et al. Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem. Biophys. Res. Commun. 377, 114–119 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Vogt, M. et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG hypermethylation in colorectal, pancreatic, mammary, ovarian, urothelial and renal cell carcinomas and soft tissue sarcomas. Virchows Arch. 458, 313–322 (2011).

    Article  PubMed  Google Scholar 

  91. Yamakuchi, M. & Lowenstein, C. J. MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle 8, 712–715 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Yukihiro, A. et al. Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells. Cancer Lett. 300, 197–204 (2011).

    Article  CAS  Google Scholar 

  93. Liu, S. et al. Camptothecin disrupts androgen receptor signaling and suppresses prostate cancer cell growth. Biochem. Biophys. Res. Commun. 394, 297–203 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Bhatnagar, N. et al. Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death Dis. 1, e105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rokhlin, O. W. et al. MicroRNA-34 mediates AR-dependent p42-induced apoptosis in prostate cancer. Cancer Biol. Ther. 7, 1288–1296 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Grimm, P. et al. Comparative analysis of prostate-specific antigen free survival outcomes for patients with low, intermediate and high risk prostate cancer treatment by radical therapy. Results from the Prostate Cancer Results Study Group. BJU Int. 109 (Suppl. 1), 22–29 (2012).

    Article  PubMed  Google Scholar 

  97. Josson, S. et al. Radiation modulation of microRNA in prostate cancer cell lines. Prostate 68, 1599–1606 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, B. et al. Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells. Prostate 71, 567–574 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Musiyenko, A., Bitko, V. & Barik, S. Ectopic expression of miR-126*, an intronic product of the vascular endothelial EGF-like 7 gene, regulates protein translation and invasiveness of prostate cancer LNCaP cells. J. Molec. Med. 86, 313–322 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Marignol, L. et al. Hypoxia in prostate cancer: a powerful shield against tumour destruction? Cancer Treat. Rev. 34, 313–327 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Vaupel, P., Mayer, A. & Hockel, M. Tumour hypoxia and malignant progression. Methods Enzymol. 381, 335–354 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Parker, C. et al. Polarographic electrode study of tumor oxygenation in clinically localized prostate cancer. Int. J. Rad. Oncol. Biol. Phys. 58, 750–757 (2004).

    Article  Google Scholar 

  103. Vergis, R. et al. Intrinsic markers of tumour hypoxia and angiogenesis in localized prostate cancer and outcome of radical treatment: a retrospective analysis of two randomized radiotherapy trials and one surgical cohort study. Lancet Oncol. 9, 342–351 (2008).

    Article  PubMed  Google Scholar 

  104. Hammond, E. M. & Giaccia, A. J. The role of p53 in hypoxia-induced apoptosis. Biochem. Biophys. Res. Commun. 331, 718–725 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Rohwer, N. et al. Hypoxia-inducible factor 1alpha determines gastric cancer chemosensitivity via modulation of p53 and NF-κB. PLoS ONE 5, e12038 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chan, Y. C. et al. miR-210: the master hypoxamir. Microcirculation 19, 215–223 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gandellini, P. et al. MicroRNAs as new therapeutic targets and tools in cancer. Expert Opin. Ther. Targets 15, 265–279 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Bhardwaj, A., Singh, S. & Singh, A. P. MicroRNA-based cancer therapeutics: Big hope from small RNAs. Mol. Cell. Pharmacol. 2, 213–219 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Gonzales, J. C. et al. Comparison of circulating microRNA 141 to circulating tumor cells, lactate dehydrogenase, and prostate-specific antigen for determining treatment response in patients with metastatic prostate cancer. Clin. Genitourin. Cancer 9, 39–45 (2011).

    Article  PubMed  Google Scholar 

  110. Gade, S. et al. Graph based fusion of miRNA and mRNA expression data improves clinical outcome prediction in prostate cancer. BMC Bioinformatics 12, 488 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Barnabas, N. et al. Chromosome 8 markers of metastatic prostate cancer in African American men: gain of the MIR151 gene and loss of the NKX3–1 gene. Prostate 71, 857–871 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Leite, K. R. et al. MicroRNA-100 expression is independently related to biochemical recurrence of prostate cancer. J. Urol. 185, 1118–1122 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Spahn, M. et al. Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int. J. Cancer 127, 394–403 (2010).

    CAS  PubMed  Google Scholar 

  114. Brase, J. C. et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int. J. Cancer 128, 608–616 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Prueitt, R. L. et al. Expression of microRNAs and protein-coding genes associated with perineural invasion in prostate cancer. Prostate 68, 1152–1164 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Maruyama, R. et al. Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin. Cancer Res. 8, 514–519 (2002).

    CAS  PubMed  Google Scholar 

  117. Mahn, R. et al. Circulating microRNAs (miRNAs) in serum of patients with prostate cancer. Urology 77, 1265e.9–1265e.16 (2011).

    Article  Google Scholar 

  118. Zhu, S. M. et al. MicroRNA-21 targets tumour suppressor gene in invasion and metastasis. Cell Res. 18, 350–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Volinia, S. et al. A microRNA expression signature of human solid tumours defines cancer gene targets. Proc. Natl Acad. Sci. USA 103, 2257–2261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Royuela, M. et al. Immunoexpressions of p21, Rb, mcl-1 and bad gene products in normal, hyperplastic and carcinomatous human prostates. Eur. Cytokine Netw. 12, 654–663 (2001).

    CAS  PubMed  Google Scholar 

  121. Scott, G. K. et al. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or mir-125b. J. Biol. Chem. 282, 1479–1486 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Fontana, L. et al. Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS ONE 3, e2236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wong, C. F. & Tellam, R. L. MicroRNA-26a targets the histone methyltransferase enhancer of Zeste homolog 2 during myogenesis. J. Biol. Chem. 283, 9836–9843 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Qin, W. et al. MiR-24 regulates apoptosis by targeting the open reading frame (ORF) region in FAF1 in cancer cells. PLoS ONE 5, e9429 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Noonan, E. J. et al. MiR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28, 1714–1724 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Lee, K. H. et al. MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene 28, 3360–3370 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Hagman, Z. et al. MiR-34c is down regulated in prostate cancer and exerts tumour suppressive functions. Int. J. Cancer 127, 2768–2776 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Clape, C. et al. MiR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS ONE 4, e7542 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Majid, S. et al. Regulation of mini-chromosome maintenance gene family by microRNA-1296 and genistein in prostate cancer. Cancer Res. 70, 2809–2818 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Lodygin, D. et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7, 2591–2600 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Wang, L. et al. Gene networks and microRNAs implicated in aggressive prostate cancer. Cancer Res. 69, 9490–9497 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gao, P. et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458, 762–765 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Giles, K. M. et al. MicroRNA regulation of growth factor signaling in human cancer cells. Methods Molec. Biol. 676, 147–163 (2010).

    Article  CAS  Google Scholar 

  135. Wang, W. X. et al. Dysregulation of the mitogen granulin in human cancer through the mir-15/107 microRNA gene group. Cancer Res. 70, 9137–9142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dong, Q. et al. Micro-RNA let-7a inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2. PLoS ONE 5, e10147 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F. O'Kelly and L. Marignol are joint first authors of the manuscript, having contributed equally to the researching of data for the article, discussion of content and reviewing the manuscript before submission. A. Perry also contributed to researching data for the article, discussion of content and reviewed the manuscript before submission. A. Meunier researched data for the article and reviewed the manuscript before submission. D. Hollywood made a substantial contribution to discussion of contents and reviewed the manuscript before submission. T. H. Lynch reviewed the manuscript before submission.

Corresponding author

Correspondence to Donal Hollywood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Kelly, F., Marignol, L., Meunier, A. et al. MicroRNAs as putative mediators of treatment response in prostate cancer. Nat Rev Urol 9, 397–407 (2012). https://doi.org/10.1038/nrurol.2012.104

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2012.104

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research