Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging gene and stem cell therapies for the treatment of erectile dysfunction

Abstract

Erectile dysfunction is a prevalent condition that leads to significant morbidity and distress, not just for affected men but also for their partners. Very few currently available treatments ameliorate the underlying causes of the disorder and 'cure' the disease state. Much recent effort has been focused on the development of gene and cell-based approaches to rectify the molecular and tissue defects responsible for ED. Gene therapy has been investigated in animal models as a means to restore normal function to the penis; at this time, however, only one human trial has been published in the peer-reviewed literature. Recent gene therapy studies have focused on the modulation of enzymes associated with the NOS/cGMP pathway, and supplementation of trophic factors, peptides and potassium channels. Stem cell therapy has been a topic of interest in more recent years but there are currently very few published reports in animal models and none in human men. Although stem cell therapy offers the potential for restoration of functional tissues, legitimate concerns remain regarding the long-term fate of stem cells. The long-term safety of both gene and stem cell therapy must be thoroughly investigated before large-scale human studies can be considered.

Key Points

  • Gene and stem cell-based therapies for the treatment of erectile dysfunction offer the potential to rejuvenate tissues that have been damaged by a variety of physiological insults

  • A number of viral vectors for gene delivery are available, each with their own merits and drawbacks

  • Modulation of the NOS/cGMP pathway and supplementation of trophic factors have been the principle foci of gene therapy investigations, although a number of other treatment approaches have also been considered

  • Stem cell therapy offers the potential for restoration of functional tissues via differentiation of stem cells or possibly by release of trophic factors

  • Despite the potential therapeutic benefits, stem cell therapy is currently limited by ethical issues, risk of disease, and host morbidity

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Laumann, E. O. et al. Prevalence and correlates of erectile dysfunction by race and ethnicity among men aged 40 or older in the United States: from the male attitudes regarding sexual health survey. J. Sex. Med. 4, 57–65 (2007).

    Article  PubMed  Google Scholar 

  2. Prins, J., Blanker, M. H., Bohnen, A. M., Thomas, S. & Bosch, J. L. Prevalence of erectile dysfunction: a systematic review of population-based studies. Int. J. Impot. Res. 14, 422–432 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Andersson, K. E. & Wagner, G. Physiology of penile erection. Physiol. Rev. 75, 191–236 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Padma-Nathan, H. et al. Pharmacotherapy for erectile dysfunction. J. Sex. Med. 1, 128–140 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Gonzalez-Cadavid, N. F., Ignarro, L. J. & Rajfer, J. Nitric oxide and the cyclic GMP system in the penis. Mol. Urol. 3, 51–59 (1999).

    CAS  PubMed  Google Scholar 

  6. Russell, S. & McVary, K. T. Lower urinary tract symptoms and erectile dysfunction: epidemiology and treatment in the aging man. Curr. Urol. Rep. 6, 445–453 (2005).

    Article  PubMed  Google Scholar 

  7. Saenz de Tejada, I. et al. Pathophysiology of erectile dysfunction. J. Sex. Med. 2, 26–39 (2005).

    Article  PubMed  Google Scholar 

  8. Azadzoi, K. M., Schulman, R. N., Aviram, M. & Siroky, M. B. Oxidative stress in arteriogenic erectile dysfunction: prophylactic role of antioxidants. J. Urol. 174, 386–393 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Jones, R. W. et al. Oxygen free radicals and the penis. Expert Opin. Pharmacother. 3, 889–897 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, J. A., Montagnani, M., Koh, K. K. & Quon, M. J. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation 113, 1888–1904 (2006).

    Article  PubMed  Google Scholar 

  11. Saenz de Tejada, I., Goldstein, I., Azadzoi, K., Krane, R. J. & Cohen, R. A. Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. N. Engl. J. Med. 320, 1025–1030 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Cartledge, J. J., Eardley, I. & Morrison, J. F. Impairment of corpus cavernosal smooth muscle relaxation by glycosylated human haemoglobin. BJU Int. 85, 735–741 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Azadzoi, K. M. & Saenz de Tejada, I. Hypercholesterolemia impairs endothelium-dependent relaxation of rabbit corpus cavernosum smooth muscle. J. Urol. 146, 238–240 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Kato, R. et al. Herpes simplex virus vector-mediated delivery of glial cell line-derived neurotrophic factor rescues erectile dysfunction following cavernous nerve injury. Gene Ther. 14, 1344–1352 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Somia, N. & Verma, I. M. Gene therapy: trials and tribulations. Nat. Rev. Genet. 1, 91–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Temin, H. M. Safety considerations in somatic gene therapy of human disease with retrovirus vectors. Hum. Gene Ther. 1, 111–123 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Brenner, M. Gene transfer by adenovectors. Blood 94, 3965–3967 (1999).

    CAS  PubMed  Google Scholar 

  18. Samaniego, L. A., Webb, A. L. & DeLuca, N. A. Functional interactions between herpes simplex virus immediate-early proteins during infection: gene expression as a consequence of ICP27 and different domains of ICP4. J. Virol. 69, 5705–5715 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Abdel Aziz, M. T. et al. Effect of HO-1 cDNA-liposome complex transfer on erectile signalling of aged rats. Andrologia 41, 176–183 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Chancellor, M. B. et al. Nitric oxide synthase gene transfer for erectile dysfunction in a rat model. BJU Int. 91, 691–696 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Deng, W. et al. Adenoviral gene transfer of eNOS: high-level expression in ex vivo expanded marrow stromal cells. Am. J. Physiol. Cell Physiol. 285, C1322–C1329 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Dall'Era, J. E. et al. Vascular endothelial growth factor (VEGF) gene therapy using a nonviral gene delivery system improves erectile function in a diabetic rat model. Int. J. Impot. Res. 20, 307–314 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Kichler, A. Gene transfer with modified polyethylenimines. J. Gene Med. 6 (Suppl. 1), S3–S10 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Bivalacqua, T. J. & Hellstrom, W. J. Potential application of gene therapy for the treatment of erectile dysfunction. J. Androl. 22, 183–190 (2001).

    CAS  PubMed  Google Scholar 

  25. Christ, G. J. & Melman, A. The application of gene therapy to the treatment of erectile dysfunction. Int. J. Impot. Res. 10, 111–112 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Melman, A. & Christ, G. J. Integrative erectile biology. The effects of age and disease on gap junctions and ion channels and their potential value to the treatment of erectile dysfunction. Urol. Clin. North Am. 28, 217–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Christ, G. J., Brink, P. R., Melman, A. & Spray, D. C. The role of gap junctions and ion channels in the modulation of electrical and chemical signals in human corpus cavernosum smooth muscle. Int. J. Impot. Res. 5, 77–96 (1993).

    CAS  PubMed  Google Scholar 

  28. Griffith, O. W. & Stuehr, D. J. Nitric oxide synthases: properties and catalytic mechanism. Annu. Rev. Physiol. 57, 707–736 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Burnett, A. L. et al. Nitric oxide-dependent penile erection in mice lacking neuronal nitric oxide synthase. Mol. Med. 2, 288–296 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hedlund, P. et al. Erectile dysfunction in cyclic GMP-dependent kinase I-deficient mice. Proc. Natl Acad. Sci. USA 97, 2349–2354 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garban, H. et al. Cloning of rat and human inducible penile nitric oxide synthase. Application for gene therapy of erectile dysfunction. Biol. Reprod. 56, 954–963 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Bivalacqua, T. J. et al. Gene transfer of endothelial nitric oxide synthase partially restores nitric oxide synthesis and erectile function in streptozotocin diabetic rats. J. Urol. 169, 1911–1917 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Burnett, A. L. Role of nitric oxide in the physiology of erection. Biol. Reprod. 52, 485–489 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Bivalacqua, T. J. et al. A rat model of Peyronie's disease associated with a decrease in erectile activity and an increase in inducible nitric oxide synthase protein expression. J. Urol. 163, 1992–1998 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Hung., A. et al. Expression of inducible nitric oxide synthase in smooth muscle cells from rat penile corpora cavernosa. J. Androl. 16, 469–481 (1995).

    CAS  PubMed  Google Scholar 

  36. Bivalacqua, T. J., Deng, W., Champion, H. C., Hellstrom, W. J. & Kadowitz, P. J. Gene therapy techniques for the delivery of endothelial nitric oxide synthase to the corpora cavernosa for erectile dysfunction. Methods Mol. Biol. 279, 173–185 (2004).

    CAS  PubMed  Google Scholar 

  37. Bivalacqua, T. J. et al. Mesenchymal stem cells alone or ex vivo gene modified with endothelial nitric oxide synthase reverse age-associated erectile dysfunction. Am. J. Physiol. Heart Circ. Physiol. 292, H1278–H1290 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Hofmann, F., Feil, R., Kleppisch, T. & Schlossmann, J. Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol. Rev. 86, 1–23 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Chang, S. et al. Downregulation of cGMP-dependent protein kinase-1 activity in the corpus cavernosum smooth muscle of diabetic rabbits. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R950–R960 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Bivalacqua, T. J. et al. Dysregulation of cGMP-dependent protein kinase 1 (PKG-1) impairs erectile function in diabetic rats: influence of in vivo gene therapy of PKG1alpha. BJU Int. 99, 1488–1494 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, Y. et al. Carbon monoxide and nitric oxide suppress the hypoxic induction of vascular endothelial growth factor gene via the 5′ enhancer. J. Biol. Chem. 273, 15257–15262 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Abraham, N. G. & Kappas, A. Heme oxygenase and the cardiovascular-renal system. Free Radic. Biol. Med. 39, 1–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Aydin, A. et al. Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycemic control. Clin. Biochem. 34, 65–70 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Cellek, S., Foxwell, N. A. & Moncada, S. Two phases of nitrergic neuropathy in streptozotocin-induced diabetic rats. Diabetes 52, 2353–2362 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Ryu, J. K. et al. The role of free radical in the pathogenesis of impotence in streptozotocin-induced diabetic rats. Yonsei Med. J. 44, 236–241 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Bivalacqua, T. J. et al. Superoxide anion production in the rat penis impairs erectile function in diabetes: influence of in vivo extracellular superoxide dismutase gene therapy. J. Sex. Med. 2, 187–197 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Jaffrey, S. R. & Snyder, S. H. PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science 274, 774–777 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Good, L. Translation repression by antisense sequences. Cell. Mol. Life Sci. 60, 854–861 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Magee, T. R. et al. Protein inhibitor of nitric oxide synthase (NOS) and the N-methyl-D-aspartate receptor are expressed in the rat and mouse penile nerves and colocalize with penile neuronal NOS. Biol. Reprod. 68, 478–488 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Magee, T. R. et al. Antisense and short hairpin RNA (shRNA) constructs targeting PIN (Protein Inhibitor of NOS) ameliorate aging-related erectile dysfunction in the rat. J. Sex. Med. 4, 633–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Mori, M. & Gotoh, T. Regulation of nitric oxide production by arginine metabolic enzymes. Biochem. Biophys. Res. Commun. 275, 715–719 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Bivalacqua, T. J., Hellstrom, W. J., Kadowitz, P. J. & Champion, H. C. Increased expression of arginase II in human diabetic corpus cavernosum: in diabetic-associated erectile dysfunction. Biochem. Biophys. Res. Commun. 283, 923–927 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Kim, N. N. et al. Probing erectile function: S-(2-boronoethyl)-L-cysteine binds to arginase as a transition state analogue and enhances smooth muscle relaxation in human penile corpus cavernosum. Biochemistry 40, 2678–2688 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Bivalacqua, T. J., Burnett, A. L., Hellstrom, W. J. & Champion, H. C. Overexpression of arginase in the aged mouse penis impairs erectile function and decreases eNOS activity: influence of in vivo gene therapy of anti-arginase. Am. J. Physiol. Heart Circ. Physiol. 292, H1340–H1351 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Chang, S. et al. Increased contractility of diabetic rabbit corpora smooth muscle in response to endothelin is mediated via Rho-kinase beta. Int. J. Impot. Res. 15, 53–62 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Bivalacqua, T. J. et al. RhoA/Rho-kinase suppresses endothelial nitric oxide synthase in the penis: a mechanism for diabetes-associated erectile dysfunction. Proc. Natl Acad. Sci. USA 101, 9121–9126 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rogers, R. S., Graziottin, T. M., Lin, C. S., Kan, Y. W. & Lue, T. F. Intracavernosal vascular endothelial growth factor (VEGF) injection and adeno-associated virus-mediated VEGF gene therapy prevent and reverse venogenic erectile dysfunction in rats. Int. J. Impot. Res. 15, 26–37 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Markus, A., Patel, T. D. & Snider, W. D. Neurotrophic factors and axonal growth. Curr. Opin. Neurobiol. 12, 523–531 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Laurikainen, A., Hiltunen, J. O., Vanhatalo, S., Klinge, E. & Saarma, M. Glial cell line-derived neurotrophic factor is expressed in penis of adult rat and retrogradely transported in penile parasympathetic and sensory nerves. Cell Tissue Res. 302, 321–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Palma, C. A. & Keast, J. R. Structural effects and potential changes in growth factor signalling in penis-projecting autonomic neurons after axotomy. BMC Neurosci. 7, 41 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wanigasekara, Y., Airaksinen, M. S., Heuckeroth, R. O., Milbrandt, J. & Keast, J. R. Neurturin signalling via GFRalpha2 is essential for innervation of glandular but not muscle targets of sacral parasympathetic ganglion neurons. Mol. Cell Neurosci. 25, 288–300 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Wanigasekara, Y. & Keast, J. R. Neurturin has multiple neurotrophic effects on adult rat sacral parasympathetic ganglion neurons. Eur. J. Neurosci. 22, 595–604 (2005).

    Article  PubMed  Google Scholar 

  63. Kato, R. et al. Herpes simplex virus vector-mediated delivery of neurturin rescues erectile dysfunction of cavernous nerve injury. Gene Ther. 16, 26–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Apfel, S. C. Neurotrophic factors in the therapy of diabetic neuropathy. Am. J. Med. 107, 34S–42S (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Lin, G. et al. Neurotrophic effects of vascular endothelial growth factor and neurotrophins on cultured major pelvic ganglia. BJU Int. 92, 631–635 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Bennet, N. E. et al. Improvement in erectile dysfunction after neurotrophic factor gene therapy in diabetic rats. J. Urol. 173, 1820–1824 (2005).

    Article  Google Scholar 

  67. Bella, A. J. et al. Brain-derived neurotrophic factor (BDNF) acts primarily via the JAK/STAT pathway to promote neurite growth in the major pelvic ganglion of the rat: part, I. J. Sex. Med. 3, 815–820 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Bakircioglu, M. E. et al. The effect of adeno-associated virus mediated brain derived neurotrophic factor in an animal model of neurogenic impotence. J. Urol. 165, 2103–2109 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Gholami, S. S. et al. The effect of vascular endothelial growth factor and adeno-associated virus mediated brain derived neurotrophic factor on neurogenic and vasculogenic erectile dysfunction induced by hyperlipidemia. J. Urol. 169, 1577–1581 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Jung, G. W., Kwak, J. Y., Yoon, S., Yoon, J. H. & Lue, T. F. IGF-I and TGF-beta2 have a key role on regeneration of nitric oxide synthase (NOS)-containing nerves after cavernous neurotomy in rats. Int. J. Impot. Res. 11, 247–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Bochinski, D. et al. Effect of insulin-like growth factor-1 and insulin-like growth factor binding protein-3 complex in cavernous nerve cryoablation. Int. J. Impot. Res. 16, 418–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. El-Sakka, A. I., Lin, C. S., Chui, R. M., Dahiya, R. & Lue, T. F. Effects of diabetes on nitric oxide synthase and growth factor genes and protein expression in an animal model. Int. J. Impot. Res. 11, 123–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Pu, X. Y., Hu, L. Q., Wang, H. P., Luo, Y. X. & Wang, X. H. Improvement in erectile dysfunction after insulin-like growth factor-1 gene therapy in diabetic rats. Asian J. Androl. 9, 83–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Yamanaka, M. et al. Vascular endothelial growth factor restores erectile function through inhibition of apoptosis in diabetic rat penile crura. J. Urol. 173, 318–323 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Gerber, H. P., Dixit, V. & Ferrara, N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem. 273, 13313–13316 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Ryu, J. K. et al. Combined angiopoietin-1 and vascular endothelial growth factor gene transfer restores cavernous angiogenesis and erectile function in a rat model of hypercholesterolemia. Mol. Ther. 13, 705–715 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Miller, M. A., Morgan, R. J., Thompson, C. S., Mikhailidis, D. P. & Jeremy, J. Y. Effects of papaverine and vasointestinal polypeptide on penile and vascular cAMP and cGMP in control and diabetic animals: an in vitro study. Int. J. Impot. Res. 7, 91–100 (1995).

    CAS  PubMed  Google Scholar 

  78. Ding, Y. Q., Takada, M., Kaneko, T. & Mizuno, N. Colocalization of vasoactive intestinal polypeptide and nitric oxide in penis-innervating neurons in the major pelvic ganglion of the rat. Neurosci. Res. 22, 129–131 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Ehmke, H., Junemann, K. P., Mayer, B. & Kummer, W. Nitric oxide synthase and vasoactive intestinal polypeptide colocalization in neurons innervating the human penile circulation. Int. J. Impot. Res. 7, 147–156 (1995).

    CAS  PubMed  Google Scholar 

  80. Shen, Z. J. et al. Gene transfer of vasoactive intestinal polypeptide into the penis improves erectile response in the diabetic rat. BJU Int. 95, 890–894 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Stief, C. G. et al. Calcitonin gene-related peptide: possibly neurotransmitter contributes to penile erection in monkeys. Urology 41, 397–401 (1993).

    Article  CAS  PubMed  Google Scholar 

  82. Djamilian, M., Stief, C. G., Kuczyk, M. & Jonas, U. Followup results of a combination of calcitonin gene-related peptide and prostaglandin E1 in the treatment of erectile dysfunction. J. Urol. 149, 1296–1298 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Bivalacqua, T. J., Champion, H. C., Abdel-Mageed, A. B., Kadowitz, P. J. & Hellstrom, W. J. Gene transfer of prepro-calcitonin gene-related peptide restores erectile function in the aged rat. Biol. Reprod. 65, 1371–1377 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Christ, G. J. The penis as a vascular organ. The importance of corporal smooth muscle tone in the control of erection. Urol. Clin. North Am. 22, 727–745 (1995).

    CAS  PubMed  Google Scholar 

  85. Venkateswarlu, K. et al. Potassium channels and human corporeal smooth muscle cell tone: diabetes and relaxation of human corpus cavernosum smooth muscle by adenosine triphosphate sensitive potassium channel openers. J. Urol. 168, 355–361 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. So, I., Chae, M. R. & Lee, S. W. Gene transfer of the K(ATP) channel restores age-related erectile dysfunction in rats. BJU Int. 100, 1154–1160 (2007).

    CAS  PubMed  Google Scholar 

  87. Robertson, B. E., Schubert, R., Hescheler, J. & Nelson, M. T. cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells. Am. J. Physiol. 265, C299–C303 (1993).

    Article  CAS  PubMed  Google Scholar 

  88. Alioua, A. et al. The large conductance, voltage-dependent, and calcium-sensitive K+ channel, Hslo, is a target of cGMP-dependent protein kinase phosphorylation in vivo. J. Biol. Chem. 273, 32950–32956 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Spektor, M. et al. Potassium channels and human corporeal smooth muscle cell tone: further evidence of the physiological relevance of the Maxi-K channel subtype to the regulation of human corporeal smooth muscle tone in vitro. J. Urol. 167, 2628–2635 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Werner, M. E., Meredith, A. L., Aldrich, R. W. & Nelson, M. T. Hypercontractility and impaired sildenafil relaxations in the BKCa channel deletion model of erectile dysfunction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R181–R188 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Christ, G. J. et al. Intracorporal injection of hSlo cDNA in rats produces physiologically relevant alterations in penile function. Am. J. Physiol. 275, H600–H608 (1998).

    CAS  PubMed  Google Scholar 

  92. Melman, A., Zhao, W., Davies, K. P., Bakal, R. & Christ, G. J. The successful long-term treatment of age related erectile dysfunction with hSlo cDNA in rats in vivo. J. Urol. 170, 285–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Christ, G. J. et al. Intracorporal injection of hSlo cDNA restores erectile capacity in STZ-diabetic F-344 rats in vivo. Am. J. Physiol. Heart Circ. Physiol. 287, H1544–H1553 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Melman, A., Bar-Chama, N., McCullough, A., Davies, K. & Christ, G. hMaxi-K gene transfer in males with erectile dysfunction: results of the first human trial. Hum. Gene Ther. 17, 1165–1176 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Bochinski, D. et al. The effect of neural embryonic stem cell therapy in a rat model of cavernosal nerve injury. BJU Int. 94, 904–909 (2004).

    Article  PubMed  Google Scholar 

  96. Song, Y. et al. Transdifferentiation of rat fetal brain stem cells into penile smooth muscle cells. BJU Int. 104, 257–262 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Song, Y. S. et al. Human neural crest stem cells transplanted in rat penile corpus cavernosum to repair erectile dysfunction. BJU Int. 102, 220–224 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Song, Y. S. et al. Potential differentiation of human mesenchymal stem cell transplanted in rat corpus cavernosum toward endothelial or smooth muscle cells. Int. J. Impot.Res. 19, 378–385 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Nolazco, G. et al. Effect of muscle-derived stem cells on the restoration of corpora cavernosa smooth muscle and erectile function in the aged rat. BJU Int. 101, 1156–1164 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Lin, G. et al. Potential of adipose-derived stem cells for treatment of erectile dysfunction. J. Sex.Med. 6 (Suppl. 3), 320–327 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Garcia, M. M. et al. Treatment of erectile dysfunction in the obese type-II diabetic ZDF rat with adipose tissue derived stem cells. J. Sex. Med. (in press).

  102. Huang, Y. C. et al. The effect of intracavernous injection of adipose tissue-derived stem cells on hyperlipidemia-associated erectile dysfunction in a rat model. J. Sex. Med. (in press).

  103. Smith, L. & Byers, J. F. Gene therapy in the post-Gelsinger era. JONAS Healthc. Law Ethics Regul. 4, 104–110 (2002).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom F. Lue.

Ethics declarations

Competing interests

T. F. Lue declares that he has acted as a consultant for Auxilium, Bayer, Eli Lilly, Medtronic and Pfizer, has received grant/research support from American Medical Systems and has been a board member for Genix Healthcare. A. W. Shindel declares that he has acted as a consultant for Boehringer Ingelheim and a section editor for Elsevier Yearbook of Urology. A. Harraz declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harraz, A., Shindel, A. & Lue, T. Emerging gene and stem cell therapies for the treatment of erectile dysfunction. Nat Rev Urol 7, 143–152 (2010). https://doi.org/10.1038/nrurol.2010.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2010.8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research