Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The bladder extracellular matrix. Part I: architecture, development and disease

Abstract

From the earliest studies with epithelial cells implanted into detrusor muscle to later experiments on smooth muscle in defined collagen gels, cell niche and extracellular matrix (ECM) have been clearly shown to orchestrate cellular behavior and fate whether quiescent, migratory, or proliferative. Normal matrix can revert transformed cells to quiescence, and damaged matrix can trigger malignancy or dedifferentiation. ECM influence in disease, development, healing and regeneration has been demonstrated in many other fields of study, but a thorough examination of the roles of ECM in bladder cell activity has not yet been undertaken. Structural ECM proteins, in concert with adhesive proteins, provide crucial structural support to the bladder. Both structural and nonstructural components of the bladder have major effects on smooth muscle function, through effects on matrix rigidity and signaling through ECM receptors. While many ECM components and receptors identified in the bladder have specific known functions in the vascular smooth musculature, their function in the bladder is often less well defined. In cancer and obstructive disease, the ECM has a critical role in pathogenesis. The challenge in these settings will be to find therapies that prevent hyperproliferation and encourage proper differentiation, through an understanding of matrix effects on cell biology and susceptibility to therapeutics.

Key Points

  • The bladder extracellular matrix (ECM) is in a dynamic conversation with its constituent cells through a variety of ECM receptors, which have crucial roles in proliferation, differentiation and homeostatic cell responses

  • The bladder ECM responds to strain injury or obstruction by increasing levels of matrix metalloproteinases, tissue inhibitors of metalloproteinases, collagen III, and many smaller components of the matrix

  • Alterations in ECM proteins can lead to changes in the stiffness of the matrix, which is a critical mediator of intracellular tension and cell behavior

  • Damaged matrix that results from bladder overdistention can cause long-lasting changes in smooth muscle cell behavior

  • Ascribing matrix changes to simple upregulation or downregulation of ECM gene expression neglects ECM alterations due to cross-linkages, proteolysis or glycosylation, which have a profound effect on distension and strength of the bladder wall

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic reciprocity.
Figure 2: The proposed MMP7–CD44–HB-EGF complex in bladder smooth muscle cell mitogenicity.
Figure 3: Effects of damaged ECM on smooth muscle cell phenotype.

Similar content being viewed by others

References

  1. Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99, 31–68 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Aitken, K. J. & Bägli, D. J. The bladder extracellular matrix. Part II: regenerative applications. Nat. Rev. Urol. 6, 612–621 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Chang, S. L., Howard, P. S., Koo, H. P. & Macarak, E. J. Role of type III collagen in bladder filling. Neurourol. Urodyn. 17, 135–145 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Longhurst, P. A., Eika, B., Leggett, R. E. & Levin, R. M. Urinary bladder function in the tight-skin mouse. J. Urol. 148, 1611–1614 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Liapis, A. et al. Changes in the quantity of collagen type I in women with genuine stress incontinence. Urol. Res. 28, 323–326 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, X., Wu, H., Byrne, M., Krane, S. & Jaenisch, R. Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc. Natl Acad. Sci. USA 94, 1852–1856 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stevenson, K., Kucich, U., Whitbeck, C., Levin, R. M. & Howard, P. S. Functional changes in bladder tissue from type III collagen-deficient mice. Mol. Cell Biochem. 283, 107–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Saban, R. et al. Bladder inflammatory transcriptome in response to tachykinins: neurokinin 1 receptor-dependent genes and transcription regulatory elements. BMC Urol. 7, 7 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Strauss, L. et al. Distribution of collagen XII and XIV in the bladder wall of the male rat with outlet obstruction. J. Urol. 163, 1304–1308 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. McMahon, A. P. et al. GUDMAP: the genitourinary developmental molecular anatomy project. J. Am. Soc. Nephrol. 19, 667–671 (2008).

    Article  PubMed  Google Scholar 

  12. Capolicchio, G., Aitken, K. J., Gu, J. X., Reddy, P. & Bägli, D. J. Extracellular matrix gene responses in a novel ex vivo model of bladder stretch injury. J. Urol. 165, 2235–2240 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Brown, A. L. et al. Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscle–urothelial cell interactions. Biomaterials 26, 529–543 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Hinek, A. & Rabinovitch, M. 67 kD elastin-binding protein is a protective “companion” of extracellular insoluble elastin and intracellular tropoelastin. J. Cell Biol. 126, 563–574 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Mithieux, S. M. & Weiss, A. S. Elastin. Adv. Protein Chem. 70, 437–461 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Koo, H. P., Macarak, E. J., Chang, S. L., Rosenbloom, J. & Howard, P. S. Temporal expression of elastic fiber components in bladder development. Connect. Tissue Res. 37, 1–11 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Rosenbloom, J. et al. Expression of microfibrillar proteins by bovine bladder urothelium. Urology 49, 287–292 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Yang, R., Amir, J., Liu, H. & Chaqour, B. Mechanical strain activates a program of genes functionally involved in paracrine signaling of angiogenesis. Physiol. Genomics 36, 1–14 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lemack, G. E. et al. Altered bladder function in transgenic mice expressing rat elastin. Neurourol. Urodyn. 18, 55–68 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Wipff, J., Allanore, Y. & Boileau, C. Interactions between fibrillin-1 and TGF-β: consequences and human pathology [French]. Med. Sci. (Paris) 25, 161–167 (2009).

    Article  Google Scholar 

  21. Spofford, C. M. & Chilian, W. M. The elastin laminin receptor functions as a mechanotransducer in vascular smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 280, H1354–H1360 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Hoffman, A. S., Grande, L. A. & Park, J. B. Sequential enzymolysis of human aorta and resultant stress-strain behavior. Biomater. Med. Devices Artif. Organs 5, 121–145 (1977).

    Article  CAS  PubMed  Google Scholar 

  23. Mochizuki, S., Brassart, B. & Hinek, A. Signaling pathways transduced through the elastin receptor facilitate proliferation of arterial smooth muscle cells. J. Biol. Chem. 277, 44854–44863 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Smeulders, N., Woolf, A. S. & Wilcox, D. T. Extracellular matrix protein expression during mouse detrusor development. J. Pediatr. Surg. 38, 1–12 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Johansson, R. & Persson, K. Phenotypic modulation of cultured bladder smooth muscle cells and the expression of inducible nitric oxide synthase. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R642–R648 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Hubschmid, U., Leong-Morgenthaler, P. M., Basset-Dardare, A., Ruault, S. & Frey, P. In vitro growth of human urinary tract smooth muscle cells on laminin and collagen type I-coated membranes under static and dynamic conditions. Tissue Eng. 11, 161–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Bendeck, M. P. et al. Smooth muscle cell matrix metalloproteinase production is stimulated via αvβ3 integrin. Arterioscler. Thromb. Vasc. Biol. 20, 1467–1472 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Jalvy, S. et al. Autocrine expression of osteopontin contributes to PDGF-mediated arterial smooth muscle cell migration. Cardiovasc. Res. 75, 738–747 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Rattazzi, M. et al. Calcification of advanced atherosclerotic lesions in the innominate arteries of ApoE-deficient mice: potential role of chondrocyte-like cells. Arterioscler. Thromb. Vasc. Biol. 25, 1420–1425 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Speer, M. Y. et al. Smooth muscle cells deficient in osteopontin have enhanced susceptibility to calcification in vitro. Cardiovasc. Res. 66, 324–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Giachelli, C. M., Speer, M. Y., Li, X., Rajachar, R. M. & Yang, H. Regulation of vascular calcification: roles of phosphate and osteopontin. Circ. Res. 96, 717–722 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Arafat, H. A., Wein, A. J. & Chacko, S. Osteopontin gene expression and immunolocalization in the rabbit urinary tract. J. Urol. 167, 746–752 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Serini, G. et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-β1. J. Cell Biol. 142, 873–881 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Little, W. C., Smith, M. L., Ebneter, U. & Vogel, V. Assay to mechanically tune and optically probe fibrillar fibronectin conformations from fully relaxed to breakage. Matrix Biol. 27, 451–461 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gee, E. P., Ingber, D. E. & Stultz, C. M. Fibronectin unfolding revisited: modeling cell traction-mediated unfolding of the tenth type-III repeat. PLoS One 3, e2373 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krammer, A., Craig, D., Thomas, W. E., Schulten, K. & Vogel, V. A structural model for force regulated integrin binding to fibronectin's RGD-synergy site. Matrix Biol. 21, 139–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Hinek, A. et al. Decreased elastin deposition and high proliferation of fibroblasts from Costello syndrome are related to functional deficiency in the 67 kD elastin-binding protein. Am. J. Hum. Genet. 66, 859–872 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hinek, A. & Wilson, S. E. Impaired elastogenesis in Hurler disease: dermatan sulfate accumulation linked to deficiency in elastin-binding protein and elastic fiber assembly. Am. J. Pathol. 156, 925–938 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ständer, M., Naumann, U., Wick, W. & Weller, M. Transforming growth factor-β and p21: multiple molecular targets of decorin-mediated suppression of neoplastic growth. Cell Tissue Res. 296, 221–227 (1999).

    Article  PubMed  Google Scholar 

  40. Border, W. A. et al. Natural inhibitor of transforming growth factor-β protects against scarring in experimental kidney disease. Nature 360, 361–364 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Badylak, S. F., Freytes, D. O. & Gilbert, T. W. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 5, 1–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Adam, S. et al. Binding of fibulin-1 to nidogen depends on its C-terminal globular domain and a specific array of calcium-binding epidermal growth factor-like (EG) modules. J. Mol. Biol. 272, 226–236 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Kresse, H. et al. Different usage of the glycosaminoglycan attachment sites of biglycan. J. Biol. Chem. 276, 13411–13416 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Vynios, D. H., Papageorgakopoulou, N., Sazakli, H. & Tsiganos, C. P. The interactions of cartilage proteoglycans with collagens are determined by their structures. Biochimie 83, 899–906 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Moreno, M. et al. Biglycan is a new extracellular component of the Chordin-BMP4 signaling pathway. EMBO J. 24, 1397–1405 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tiitta, O., Wahlström, T., Virtanen, I. & Gould, V. E. Tenascin in inflammatory conditions and neoplasms of the urinary bladder. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 63, 283–287 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Saga, Y., Tsukamoto, T., Jing, N., Kusakabe, M. & Sakakura, T. Murine tenascin: cDNA cloning, structure and temporal expression of isoforms. Gene 104, 177–185 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Wilson, C. B., Leopard, J., Cheresh, D. A. & Nakamura, R. M. Extracellular matrix and integrin composition of the normal bladder wall. World J. Urol. 14 (Suppl. 1), S30–S37 (1996).

    PubMed  Google Scholar 

  49. Jones, P. L., Crack, J. & Rabinovitch, M. Regulation of tenascin-C, a vascular smooth muscle cell survival factor that interacts with the αvβ3 integrin to promote epidermal growth factor receptor phosphorylation and growth. J. Cell Biol. 139, 279–293 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sciandra, F. et al. First molecular characterization and immunolocalization of keratoepithelin in adult human skeletal muscle. Matrix Biol. 27, 360–370 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Gingras, J. et al. Agrin becomes concentrated at neuroeffector junctions in developing rodent urinary bladder. Cell Tissue Res. 320, 115–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Erickson, D. R., Schwarze, S. R., Dixon, J. K., Clark, C. J. & Hersh, M. A. Differentiation associated changes in gene expression profiles of interstitial cystitis and control urothelial cells. J. Urol. 180, 2681–2687 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Heino, J. The collagen receptor integrins have distinct ligand recognition and signaling functions. Matrix Biol. 19, 319–323 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Lal, H. et al. Integrins: novel therapeutic targets for cardiovascular diseases. Cardiovasc. Hematol. Agents Med. Chem. 5, 109–132 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Brancaccio, M. et al. Integrin signaling: the tug-of-war in heart hypertrophy. Cardiovasc. Res. 70, 422–433 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Romer, L. H., Birukov, K. G. & Garcia, J. G. Focal adhesions: paradigm for a signaling nexus. Circ. Res. 98, 606–616 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Southgate, J., Kennedy, W., Hutton, K. A. & Trejdosiewicz, L. K. Expression and in vitro regulation of integrins by normal human urothelial cells. Cell Adhes. Commun. 3, 231–242 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Upadhyay, J., Aitken, K. J., Damdar, C., Bolduc, S. & Bägli, D. J. Integrins expressed with bladder extracellular matrix after stretch injury in vivo mediate bladder smooth muscle cell growth in vitro. J. Urol. 169, 750–755 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Ozturk, H., Ozturk, H., Guneli, E., Yagmur, Y. & Buyukbayram, H. Expression of CD44 and E cadherin cell adhesion molecules in hypertrophied bladders during chronic partial urethral obstruction and after release of partial obstruction in rats. Urology 65, 1013–1018 (2005).

    Article  PubMed  Google Scholar 

  60. Yu, W. H., Woessner, J. F. Jr, McNeish, J. D. & Stamenkovic, I. CD44 anchors the assembly of matrilysin/MMP 7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev. 16, 307–323 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Acharya, P. S. et al. Fibroblast migration is mediated by CD44-dependent TGF beta activation. J. Cell Sci. 121, 1393–1402 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Miyamoto, A., Lau, R., Hein, P. W., Shipley, J. M. & Weinmaster, G. Microfibrillar proteins MAGP-1 and MAGP-2 induce Notch1 extracellular domain dissociation and receptor activation. J. Biol. Chem. 281, 10089–10097 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Hodkinson, P. S. et al. Mammalian NOTCH-1 activates β1 integrins via the small GTPase R-Ras. J. Biol. Chem. 282, 28991–29001 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Bägli, D. J., Joyner, B. D., Mahoney, S. R. & McCulloch, L. The hyaluronic acid receptor RHAMM is induced by stretch injury of rat bladder in vivo and influences smooth muscle cell contraction in vitro [corrected]. J. Urol. 162, 832–840 (1999).

    Article  PubMed  Google Scholar 

  65. Ferri, N., Carragher, N. O. & Raines, E. W. Role of discoidin domain receptors 1 and 2 in human smooth muscle cell-mediated collagen remodeling: potential implications in atherosclerosis and lymphangioleiomyomatosis. Am. J. Pathol. 164, 1575–1585 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Blissett, A. R. et al. Regulation of collagen fibrillogenesis by cell-surface expression of kinase dead DDR2. J. Mol. Biol. 385, 902–911 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Vogel, W., Gish, G. D., Alves, F. & Pawson, T. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol. Cell 1, 13–23 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Konitsiotis, A. D. et al. Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen. J. Biol. Chem. 283, 6861–6868 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Leitinger, B. & Kwan, A. P. The discoidin domain receptor DDR2 is a receptor for type X collagen. Matrix Biol. 25, 355–364 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. GUDMAP:10746. Ddr2 discoidin domain receptor family, member 2. Stage TS23. Genitourinary Development Molecular Anatomy Project [online], (2009).

  71. Hinek, A., Keeley, F. W. & Callahan, J. Recycling of the 67 kDa elastin binding protein in arterial myocytes is imperative for secretion of tropoelastin. Exp. Cell Res. 220, 312–324 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Privitera, S., Prody, C. A., Callahan, J. W. & Hinek, A. The 67 kDa enzymatically inactive alternatively spliced variant of β-galactosidase is identical to the elastin/laminin-binding protein. J. Biol. Chem. 273, 6319–6326 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Hinek, A., Braun, K. R., Liu, K., Wang, Y. & Wight, T. N. Retrovirally mediated overexpression of versican v3 reverses impaired elastogenesis and heightened proliferation exhibited by fibroblasts from Costello syndrome and Hurler disease patients. Am. J. Pathol. 164, 119–131 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hinek, A., Boyle, J. & Rabinovitch, M. Vascular smooth muscle cell detachment from elastin and migration through elastic laminae is promoted by chondroitin sulfate-induced “shedding” of the 67 kDa cell surface elastin binding protein. Exp. Cell Res. 203, 344–353 (1992).

    Article  CAS  PubMed  Google Scholar 

  75. Hinek, A. Biological roles of the non-integrin elastin/laminin receptor. Biol. Chem. 377, 471–480 (1996).

    CAS  PubMed  Google Scholar 

  76. Spofford, C. M. & Chilian, W. M. Mechanotransduction via the elastin-laminin receptor (ELR) in resistance arteries. J. Biomech. 36, 645–652 (2003).

    Article  PubMed  Google Scholar 

  77. Wilson, E., Sudhir, K. & Ives, H. E. Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J. Clin. Invest. 96, 2364–2372 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lucero, H. A. & Kagan, H. M. Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell. Mol. Life Sci. 63, 2304–2316 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Lelièvre, E. et al. VE-statin/EGFL7 regulates vascular elastogenesis by interacting with lysyl oxidases. EMBO J. 27, 1658–1670 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lee, U. J. et al. Lower urogenital tract anatomical and functional phenotype in lysyl oxidase like-1 knockout mice resembles female pelvic floor dysfunction in humans. Am. J. Physiol. Renal Physiol. 295, F545–F555 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Liu, X., Zhao, Y., Pawlyk, B., Damaser, M. & Li, T. Failure of elastic fiber homeostasis leads to pelvic floor disorders. Am. J. Pathol. 168, 519–528 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, X. et al. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat. Genet. 36, 178–182 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Mäki, J. M. et al. Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation 106, 2503–2509 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Hornstra, I. K. et al. Lysyl oxidase is required for vascular and diaphragmatic development in mice. J. Biol. Chem. 278, 14387–14393 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Matsumoto, K., Fujiwara, Y., Nagai, R. & Yoshida, M. Immunohistochemical detection of advanced glycation end products in human bladder with specific monoclonal antibody. Int. J. Urol. 16, 402–405 (2009).

    Article  PubMed  Google Scholar 

  87. Winlove, C. P., Parker, K. H., Avery, N. C. & Bailey, A. J. Interactions of elastin and aorta with sugars in vitro and their effects on biochemical and physical properties. Diabetologia 39, 1131–1139 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Furber, J. D. Extracellular glycation crosslinks: prospects for removal. Rejuvenation Res. 9, 274–278 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Spoerl, E., Mrochen, M., Sliney, D., Trokel, S. & Seiler, T. Safety of UVA-riboflavin cross-linking of the cornea. Cornea 26, 385–389 (2007).

    Article  PubMed  Google Scholar 

  90. Sutherland, R. S., Baskin, L. S., Elfman, F., Hayward, S. W. & Cunha, G. R. The role of type IV collagenases in rat bladder development and obstruction. Pediatr. Res. 41, 430–434 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Hipp, J. D. et al. Using gene chips to identify organ-specific, smooth muscle responses to experimental diabetes: potential applications to urological diseases. BJU Int. 99, 418–430 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Aitken, K. et al. Mammalian target of rapamycin (mTOR) induces proliferation and de-differentiation responses to three coordinate pathophysiologic stimuli (mechanical strain, hypoxia, and extracellular matrix remodeling) in rat bladder smooth muscle. Am. J. Pathol. (in press).

  93. Backhaus, B. O. et al. Alterations in the molecular determinants of bladder compliance at hydrostatic pressures less than 40 cmH2O. J. Urol. 168, 2600–2604 (2002).

    Article  PubMed  Google Scholar 

  94. Franco, C. et al. Doxycycline alters vascular smooth muscle cell adhesion, migration, and reorganization of fibrillar collagen matrices. Am. J. Pathol. 168, 1697–1709 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Daley, W. P., Peters, S. B. & Larsen, M. Extracellular matrix dynamics in development and regenerative medicine. J. Cell Sci. 121, 255–264 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Shiroyanagi, Y. et al. Urothelial sonic hedgehog signaling plays an important role in bladder smooth muscle formation. Differentiation 75, 968–977 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Haraguchi, R. et al. Molecular analysis of coordinated bladder and urogenital organ formation by Hedgehog signaling. Development 134, 525–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Cheng, W. et al. Sonic hedgehog mediator Gli2 regulates bladder mesenchymal patterning. J. Urol. 180, 1543–1550 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Sasaki, Y., Iwai, N., Tsuda, T. & Kimura, O. Sonic hedgehog and bone morphogenetic protein 4 expressions in the hindgut region of murine embryos with anorectal malformations. J. Pediatr. Surg. 39, 170–173 (2004).

    Article  PubMed  Google Scholar 

  100. Wu, H. Y., Baskin, L. S., Blakey, C., Goodman, J. & Cunha, G. R. Ultrastructural smooth muscle ontogeny of the rat bladder. Adv. Exp. Med. Biol. 462, 93–102 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Wagg, A. & Fry, C. H. Visco-elastic properties of isolated detrusor smooth muscle. Scand. J. Urol. Nephrol. Suppl. 201, 12–18 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Howlett, A. R., Hodges, G. M. & Rowlatt, C. Epithelial–stromal interactions in the adult bladder: urothelial growth, differentiation, and maturation on culture facsimiles of bladder stroma. Dev. Biol. 118, 403–415 (1986).

    Article  CAS  PubMed  Google Scholar 

  103. Oottamasathien, S. et al. Bladder tissue formation from cultured bladder urothelium. Dev. Dyn. 235, 2795–2801 (2006).

    Article  PubMed  Google Scholar 

  104. Baskin, L. S. et al. Cellular signaling in the bladder. Front. Biosci. 2, d592–d595 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Master, V. A., Wei, G., Liu, W. & Baskin, L. S. Urothlelium facilitates the recruitment and trans-differentiation of fibroblasts into smooth muscle in acellular matrix. J. Urol. 170, 1628–1632 (2003).

    Article  PubMed  Google Scholar 

  106. Glukhova, M. A., Frid, M. G., Shekhonin, B. V., Balabanov, Y. V. & Koteliansky, V. E. Expression of fibronectin variants in vascular and visceral smooth muscle cells in development. Dev. Biol. 141, 193–202 (1990).

    Article  CAS  PubMed  Google Scholar 

  107. Le Gat, L. et al. The β3 integrin gene is expressed at high levels in the major haematopoietic and lymphoid organs, vascular system, and skeleton during mouse embryo development. Cell Commun. Adhes. 10, 129–140 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Baciu, P. C., Suleiman, E. A., Deryugina, E. I. & Strongin, A. Y. Membrane type-1 matrix metalloproteinase (MT1-MMP) processing of pro-αv integrin regulates cross-talk between αvβ3 and α2β1 integrins in breast carcinoma cells. Exp. Cell Res. 291, 167–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Deryugina, E. I., Bourdon, M. A., Jungwirth, K., Smith, J. W. & Strongin, A. Y. Functional activation of integrin αvβ3 in tumor cells expressing membrane-type 1 matrix metalloproteinase. Int. J. Cancer 86, 15–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Martínez-Morales, J. R. et al. Vitronectin is expressed in the ventral region of the neural tube and promotes the differentiation of motor neurons. Development 124, 5139–5147 (1997).

    PubMed  Google Scholar 

  111. Pons, S., Trejo, J. L., Martínez-Morales, J. R. & Martí, E. Vitronectin regulates Sonic hedgehog activity during cerebellum development through CREB phosphorylation. Development 128, 1481–1492 (2001).

    CAS  PubMed  Google Scholar 

  112. Berger, T. M., Hirsch, E., Djonov, V. & Schittny, J. C. Loss of β1-integrin-deficient cells during the development of endoderm-derived epithelia. Anat. Embryol. (Berl.) 207, 283–288 (2003).

    Article  CAS  Google Scholar 

  113. Baskin, L. S., Sutherland, R. S., Thomson, A. A., Hayward, S. W. & Cunha, G. R. Growth factors and receptors in bladder development and obstruction. Lab. Invest. 75, 157–166 (1996).

    CAS  PubMed  Google Scholar 

  114. Chang, S. L., Chung, J. S., Yeung, M. K., Howard, P. S. & Macarak, E. J. Roles of the lamina propria and the detrusor in tension transfer during bladder filling. Scand. J. Urol. Nephrol. 201 (Suppl.), 38–45 (1999).

    CAS  Google Scholar 

  115. GUDMAP:9703. Lgals1 Lectin, galactose binding, soluble 1. Stage TS21. Genitourinary Development Molecular Anatomy Project [online], (2009).

  116. Little, M. H. et al. A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Expr. Patterns 7, 680–699 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hapln1, hyaluronan and proteoglycan link protein 1, bladders expressing fluorescent reporters, gene expression array-based, count. Gene Expression Omnibus Profiles [online], (2009).

  118. Le Goff, C. et al. Regulation of procollagen amino-propeptide processing during mouse embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen biosynthesis and dermatosparaxis. Development 133, 1587–1596 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Wang, W. M. et al. Transforming growth factor-beta induces secretion of activated ADAMTS 2: a procollagen III N proteinase. J. Biol. Chem. 278, 19549–19557 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Braun, A. et al. PINCH2 is a new five LIM domain protein, homologous to PINCH and localized to focal adhesions. Exp. Cell Res. 284, 239–250 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Morrow, D. et al. Sonic Hedgehog induces Notch target gene expression in vascular smooth muscle cells via VEGF-A. Arterioscler. Thromb. Vasc. Biol. 29, 1112–1118 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Androutsellis-Theotokis, A. et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442, 823–826 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Scholzen, T. et al. The murine decorin: complete cDNA cloning, genomic organization, chromosomal assignment, and expression during organogenesis and tissue differentiation. J. Biol. Chem. 269, 28270–28281 (1994).

    CAS  PubMed  Google Scholar 

  124. Bagli, D. J. In Progress in Pediatric Urology Vol. 4 (eds Bajpai, M. et al.) 1–10 (Pennwell Publishers, New Delhi, 2001).

    Google Scholar 

  125. Coulson, W. Coulson on the Diseases of the Bladder and the Prostate Gland (William Wood and Company New York, NY, 1881).

    Google Scholar 

  126. Alloussi, S. H., Muertz, G., Lang, C. & Alloussi, S. Concentric and excentric compensation mechanisms in patients with benign prostatic syndrome—a retrospective analysis of 3162 men with conventional urodynamic/videourodynamic studies [abstract #535]. International Continence Society Annual Meeting. Rotterdam, The Netherlands 20–24 August 2007, http://www.icsoffice.org/publications/2007/pdf/0535.pdf (2007).

  127. Peters, C. A. et al. The effect of obstruction on the developing bladder. J. Urol. 148, 491–496 (1992).

    Article  CAS  PubMed  Google Scholar 

  128. Schröder, A. et al. Effect of chronic bladder outlet obstruction on blood flow of the rabbit bladder. J. Urol. 165, 640–646 (2001).

    Article  PubMed  Google Scholar 

  129. Kato, K. et al. The functional effects of long-term outlet obstruction on the rabbit urinary bladder. J. Urol. 143, 600–606 (1990).

    Article  CAS  PubMed  Google Scholar 

  130. Landau, E. H. et al. Loss of elasticity in dysfunctional bladders: urodynamic and histochemical correlation. J. Urol. 152, 702–705 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. Inaba, M. et al. Upregulation of heme oxygenase and collagen type III in the rat bladder after partial bladder outlet obstruction. Urol. Int. 78, 270–277 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Ewalt, D. H. et al. Is lamina propria matrix responsible for normal bladder compliance? J. Urol. 148, 544–549 (1992).

    Article  CAS  PubMed  Google Scholar 

  133. Tekgul, S. et al. Collagen types I and III localization by in situ hybridization and immunohistochemistry in the partially obstructed young rabbit bladder. J. Urol. 156, 582–586 (1996).

    Article  CAS  PubMed  Google Scholar 

  134. Deveaud, C. M. et al. Molecular analysis of collagens in bladder fibrosis. J. Urol. 160, 1518–1527 (1998).

    Article  CAS  PubMed  Google Scholar 

  135. Baskin, L., Howard, P. S. & Macarak, E. Effect of physical forces on bladder smooth muscle and urothelium. J. Urol. 150, 601–607 (1993).

    Article  CAS  PubMed  Google Scholar 

  136. Kaplan, E. P., Richier, J. C., Howard, P. S., Ewalt, D. H. & Lin, V. K. Type III collagen messenger RNA is modulated in non-compliant human bladder tissue. J. Urol. 157, 2366–2369 (1997).

    Article  CAS  PubMed  Google Scholar 

  137. Imamura, M. et al. Basic fibroblast growth factor modulates proliferation and collagen expression in urinary bladder smooth muscle cells. Am. J. Physiol. Renal Physiol. 293, F1007–F1017 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Levin, R. M., O'Connor, L. J., Leggett, R. E., Whitbeck, C. & Chichester, P. Focal hypoxia of the obstructed rabbit bladder wall correlates with intermediate decompensation. Neurourol. Urodyn. 22, 156–163 (2003).

    Article  PubMed  Google Scholar 

  139. Buttyan, R., Chen, M. W. & Levin, R. M. Animal models of bladder outlet obstruction and molecular insights into the basis for the development of bladder dysfunction. Eur. Urol. 32 (Suppl. 1), 32–39 (1997).

    CAS  PubMed  Google Scholar 

  140. Lee, S. D. et al. Collagen prolyl 4 hydroxylase is up-regulated in an acute bladder outlet obstruction. J. Pediatr. Urol. 2, 225–232 (2006).

    Article  PubMed  Google Scholar 

  141. Liu, G. & Daneshgari, F. Temporal diabetes- and diuresis-induced remodeling of the urinary bladder in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R837–R843 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Gray, M. A. et al. Time-dependent alterations of select genes in streptozotocin-induced diabetic rat bladder. Urology 71, 1214–1219 (2008).

    Article  PubMed  Google Scholar 

  143. Yang, L., He, D. L., Wang, S., Cheng, H. P. & Wang, X. Y. Effect of long-term partial bladder outlet obstruction on caldesmon isoforms and their correlation with contractile function. Acta Pharmacol. Sin. 29, 600–605 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Djavan, B. et al. Decreased elastin gene expression in noncompliant human bladder tissue: a competitive reverse transcriptase-polymerase chain reaction analysis. J. Urol. 160, 1658–1662 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Nagatomi, J. et al. Early molecular-level changes in rat bladder wall tissue following spinal cord injury. Biochem. Biophys. Res. Commun. 334, 1159–1164 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Wognum, S., Lagoa, C. E., Nagatomi, J., Sacks, M. S. & Vodovotz, Y. An exploratory pathways analysis of temporal changes induced by spinal cord injury in the rat bladder wall: insights on remodeling and inflammation. PLoS One 4, e5852 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jesudason, R., Black, L., Majumdar, A., Stone, P. & Suki, B. Differential effects of static and cyclic stretching during elastase digestion on the mechanical properties of extracellular matrices. J. Appl. Physiol. 103, 803–811 (2007).

    Article  PubMed  Google Scholar 

  148. Joddar, B. & Ramamurthi, A. Elastogenic effects of exogenous hyaluronan oligosaccharides on vascular smooth muscle cells. Biomaterials 27, 5698–5707 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Aitken, K. J. et al. Mechanotransduction of extracellular signal-regulated kinases 1 and 2 mitogen-activated protein kinase activity in smooth muscle is dependent on the extracellular matrix and regulated by matrix metalloproteinases. Am. J. Pathol. 169, 459–470 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Herz, D. B., Aitken, K. & Bagli, D. J. Collagen directly stimulates bladder smooth muscle cell growth in vitro: regulation by extracellular regulated mitogen activated protein kinase. J. Urol. 170, 2072–2076 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Sabha, N. et al. Matrix metalloproteinase-7 and epidermal growth factor receptor mediate hypoxia-induced extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase activation and subsequent proliferation in bladder smooth muscle cells. In Vitro Cell Dev. Biol. Anim. 42, 124–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Jones, P. L., Jones, F. S., Zhou, B. & Rabinovitch, M. Induction of vascular smooth muscle cell tenascin-C gene expression by denatured type I collagen is dependent upon a β3 integrin-mediated mitogen-activated protein kinase pathway and a 122-base pair promoter element. J. Cell Sci. 112 (Pt 4), 435–445 (1999).

    CAS  PubMed  Google Scholar 

  153. Ghafar, M. A. et al. Hypoxia and an angiogenic response in the partially obstructed rat bladder. Lab. Invest. 82, 903–909 (2002).

    Article  PubMed  Google Scholar 

  154. Peters, C. A. et al. Dysregulated proteolytic balance as the basis of excess extracellular matrix in fibrotic disease. Am. J. Physiol. 272, R1960–R1965 (1997).

    Article  CAS  PubMed  Google Scholar 

  155. Elkelini, M. S., Aitken, K., Bägli, D. J. & Hassouna, M. M. Effects of doxycycline on voiding behaviour of rats with bladder outlet obstruction. BJU Int. 103, 537–540 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Brown, J. S. et al. Urologic complications of diabetes. Diabetes Care 28, 177–185 (2005).

    Article  PubMed  Google Scholar 

  157. Rösen, P., Du, X. & Tschöpe, D. Role of oxygen derived radicals for vascular dysfunction in the diabetic heart: prevention by alpha-tocopherol? Mol. Cell. Biochem. 188, 103–111 (1998).

    Article  PubMed  Google Scholar 

  158. Chang, K. C., Liang, J. T., Tsai, P. S., Wu, M. S. & Hsu, K. L. Prevention of arterial stiffening by pyridoxamine in diabetes is associated with inhibition of the pathogenic glycation on aortic collagen. Br. J. Pharmacol. 157, 1419–1426 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yan, S. F., Ramasamy, R. & Schmidt, A. M. The receptor for advanced glycation endproducts (RAGE) and cardiovascular disease. Expert Rev. Mol. Med. 11, e9 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Rittié, L., Berton, A., Monboisse, J. C., Hornebeck, W. & Gillery, P. Decreased contraction of glycated collagen lattices coincides with impaired matrix metalloproteinase production. Biochem. Biophys. Res. Commun. 264, 488–492 (1999).

    Article  PubMed  Google Scholar 

  161. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. León, H., Baczko, I., Sawicki, G., Light, P. E. & Schulz, R. Inhibition of matrix metalloproteinases prevents peroxynitrite-induced contractile dysfunction in the isolated cardiac myocyte. Br. J. Pharmacol. 153, 676–683 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Council, L. & Hameed, O. Differential expression of immunohistochemical markers in bladder smooth muscle and myofibroblasts, and the potential utility of desmin, smoothelin, and vimentin in staging of bladder carcinoma. Mod. Pathol. 22, 639–650 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Ingber, D. E. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ. Res. 91, 877–887 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Jones, M., Tussey, L., Athanasou, N. & Jackson, D. G. Heparan sulfate proteoglycan isoforms of the CD44 hyaluronan receptor induced in human inflammatory macrophages can function as paracrine regulators of fibroblast growth factor action. J. Biol. Chem. 275, 7964–7974 (2000).

    Article  CAS  PubMed  Google Scholar 

  166. Fujita, Y. et al. CD44 signaling through focal adhesion kinase and its anti-apoptotic effect. FEBS Lett. 528, 101–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  167. Hipp, J. A., Hipp, J. D., Yoo, J. J., Atala, A. & Andersson, K. E. Microarray analysis of bladder smooth muscle from patients with myelomeningocele. BJU Int. 102, 741–746 (2008).

    Article  PubMed  Google Scholar 

  168. Lin, H. K. et al. (2004). Characterization of neuropathic bladder smooth muscle cells in culture. J. Urol. 171, 1348–1352 (2004).

    Article  PubMed  Google Scholar 

  169. Dozmorov, M. G., Kropp, B. P., Hurst, R. E., Cheng, E. Y. & Lin, H. K. Differentially expressed gene networks in cultured smooth muscle cells from normal and neuropathic bladder. J. Smooth Muscle Res. 43, 55–72 (2007).

    Article  PubMed  Google Scholar 

  170. Halachmi, S. et al. Role of signal transducer and activator of transcription 3 (STAT3) in stretch injury to bladder smooth muscle cells. Cell Tissue Res. 326, 149–158 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Hauser, P. J., Han, Z., Sindhwani, P. & Hurst, R. E. Sensitivity of bladder cancer cells to curcumin and its derivatives depends on the extracellular matrix. Anticancer Res. 27, 737–740 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Ratliff, T. L., Palmer, J. O., McGarr, J. A. & Brown, E. J. Intravesical Bacillus Calmette–Guérin therapy for murine bladder tumors: initiation of the response by fibronectin-mediated attachment of Bacillus Calmette–Guérin. Cancer Res. 47, 1762–1766 (1987).

    CAS  PubMed  Google Scholar 

  173. Hudson, M. A., Brown, E. J., Ritchey, J. K. & Ratliff, T. L. Modulation of fibronectin-mediated Bacillus Calmette–Guérin attachment to murine bladder mucosa by drugs influencing the coagulation pathways. Cancer Res. 51, 3726–3732 (1991).

    CAS  PubMed  Google Scholar 

  174. Ratliff, T. L., Kavoussi, L. R. & Catalona, W. J. Role of fibronectin in intravesical BCG therapy for superficial bladder cancer. J. Urol. 139, 410–414 (1988).

    Article  CAS  PubMed  Google Scholar 

  175. Kanayama, H. Matrix metalloproteinases and bladder cancer. J. Med. Invest. 48, 31–43 (2001).

    CAS  PubMed  Google Scholar 

  176. Ioachim, E. et al. Thrombospondin-1 expression in urothelial carcinoma: prognostic significance and association with p53 alterations, tumour angiogenesis and extracellular matrix components. BMC Cancer 6, 140 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hurst, R. E. et al. Proteome-level display by 2-dimensional chromatography of extracellular matrix-dependent modulation of the phenotype of bladder cancer cells. Proteome Sci. 4, 13 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Cohen, M. B., Griebling, T. L., Ahaghotu, C. A., Rokhlin, O. W. & Ross, J. S. Cellular adhesion molecules in urologic malignancies. Am. J. Clin. Pathol. 107, 56–63 (1997).

    Article  CAS  PubMed  Google Scholar 

  179. Ohyama, C. Glycosylation in bladder cancer. Int. J. Clin. Oncol. 13, 308–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Habuchi, T. et al. Prognostic markers for bladder cancer: international consensus panel on bladder tumor markers. Urology 66, 64–74 (2005).

    Article  PubMed  Google Scholar 

  181. Sarikaya, A. et al. Antimicrobial activity associated with extracellular matrices. Tissue Eng. 8, 63–71 (2002).

    Article  PubMed  Google Scholar 

  182. Brennan, E. P. et al. Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix. Tissue Eng. 12, 2949–2955 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Brown, B., Lindberg, K., Reing, J., Stolz, D. B. & Badylak, S. F. The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng. 12, 519–526 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Wiseman, O. J., Fowler, C. J. & Landon, D. N. The role of the human bladder lamina propria myofibroblast. BJU Int. 91, 89–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  185. Chun, S. Y. et al. Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials 28, 4251–4256 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darius J. Bägli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Hyaluronic acid rapidly responds to strain in the detrusor muscle region. (PPT 1896 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aitken, K., Bägli, D. The bladder extracellular matrix. Part I: architecture, development and disease. Nat Rev Urol 6, 596–611 (2009). https://doi.org/10.1038/nrurol.2009.201

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2009.201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing