Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Proteinases and their receptors in inflammatory arthritis: an overview

Key Points

  • Microenvironment proteinase-mediated signalling can have a key role in arthritis

  • Proteinase-mediated activation or silencing of proteinase-activated receptors (PARs), cross-activation of transient receptor potential cation channels and release of complement receptor ligands can regulate pain and inflammation in the joint

  • Proteinases and their receptors, including the PARs, represent promising targets for the treatment of arthritic pain and inflammation

  • Either enzyme-selective or broad-spectrum proteinase inhibitors administered in the restricted environment of the joint space over a programmed time frame could prove of value in treating arthritis

Abstract

Proteinases are enzymes with established roles in physiological and pathological processes such as digestion and the homeostasis, destruction and repair of tissues. Over the past few years, the hormone-like properties of circulating proteinases have become increasingly appreciated. Some proteolytic enzymes trigger cell signalling via proteinase-activated receptors, a family of G protein-coupled receptors that have been implicated in inflammation and pain in inflammatory arthritis. Proteinases can also regulate ion flux owing to the cross-sensitization of transient receptor potential cation channel subfamily V members 1 and 4, which are associated with mechanosensing and pain. In this Review, the idea that proteinases have the potential to orchestrate inflammatory signals by interacting with receptors on cells within the synovial microenvironment of an inflamed joint is revisited in three arthritic diseases: osteoarthritis, spondyloarthritis and rheumatoid arthritis. Unanswered questions are highlighted and the therapeutic potential of modulating this proteinase–receptor axis for the management of disease in patients with these types of arthritis is also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proteinases in inflammatory arthritis.
Figure 2: Proteolytically activated receptors in inflammatory arthritis.
Figure 3: Therapeutic manipulation of proteinase-related signalling pathways.

Similar content being viewed by others

References

  1. Firestein, G. S. & McInnes, I. B. Immunopathogenesis of rheumatoid arthritis. Immunity 46, 183–196 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ambarus, C., Yeremenko, N., Tak, P. P. & Baeten, D. Pathogenesis of spondyloarthritis: autoimmune or autoinflammatory? Curr. Opin. Rheumatol 24, 351–358 (2012).

    CAS  PubMed  Google Scholar 

  3. Haseeb, A. & Haqqi, T. M. Immunopathogenesis of osteoarthritis. Clin. Immunol. 146, 185–196 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Loeser, R. F., Goldring, S. R., Scanzello, C. R. & Goldring, M. B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 64, 1697–1707 (2012).

    PubMed  PubMed Central  Google Scholar 

  5. Robinson, W. H. et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 580–592 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lubberts, E. The IL-23−IL-17 axis in inflammatory arthritis. Nat. Rev. Rheumatol 11, 415–429 (2015).

    CAS  PubMed  Google Scholar 

  7. Ackermann, C. & Kavanaugh, A. Tumor necrosis factor as a therapeutic target of rheumatologic disease. Expert Opin. Ther. Targets 11, 1369–1384 (2007).

    CAS  PubMed  Google Scholar 

  8. Noack, M. & Miossec, P. Selected cytokine pathways in rheumatoid arthritis. Semin. Immunopathol. 39, 365–383 (2017).

    CAS  PubMed  Google Scholar 

  9. Glintborg, B. et al. Treatment response, drug survival, and predictors thereof in 764 patients with psoriatic arthritis treated with anti-tumor necrosis factor α therapy: results from the nationwide Danish DANBIO registry. Arthritis Rheum. 63, 382–390 (2011).

    PubMed  Google Scholar 

  10. Glintborg, B. et al. Clinical response, drug survival and predictors thereof in 432 ankylosing spondylitis patients after switching tumour necrosis factor α inhibitor therapy: results from the Danish nationwide DANBIO registry. Ann. Rheum. Dis. 72, 1149–1155 (2013).

    CAS  PubMed  Google Scholar 

  11. Hetland, M. L. et al. Direct comparison of treatment responses, remission rates, and drug adherence in patients with rheumatoid arthritis treated with adalimumab, etanercept, or infliximab: results from eight years of surveillance of clinical practice in the nationwide Danish DANBIO registry. Arthritis Rheum. 62, 22–32 (2010).

    CAS  PubMed  Google Scholar 

  12. Hermann, W., Lambova, S. & Muller-Ladner, U. Current treatment options for osteoarthritis. Curr. Rheumatol Rev. https://doi.org/10.2174/1573397113666170829155149 (2017).

    CAS  PubMed  Google Scholar 

  13. Rengel, Y., Ospelt, C. & Gay, S. Proteinases in the joint: clinical relevance of proteinases in joint destruction. Arthritis Res. Ther. 9, 221 (2007).

    PubMed  PubMed Central  Google Scholar 

  14. Martel-Pelletier, J., Welsch, D. J. & Pelletier, J. P. Metalloproteases and inhibitors in arthritic diseases. Best Pract. Res. Clin. Rheumatol. 15, 805–829 (2001).

    CAS  PubMed  Google Scholar 

  15. Burrage, P. S., Mix, K. S. & Brinckerhoff, C. E. Matrix metalloproteinases: role in arthritis. Front. Biosci. 11, 529–543 (2006).

    CAS  PubMed  Google Scholar 

  16. Amar, S., Smith, L. & Fields, G. B. Matrix metalloproteinase collagenolysis in health and disease. Biochim. Biophys. Acta 1864, 1940–1951 (2017).

    CAS  PubMed Central  Google Scholar 

  17. Muller-Ladner, U., Gay, R. E. & Gay, S. Cysteine proteinases in arthritis and inflammation. Perspect. Drug Discov. 6, 87–98 (1996).

    Google Scholar 

  18. Delaisse, J. M. et al. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc. Res. Tech. 61, 504–513 (2003).

    CAS  PubMed  Google Scholar 

  19. Hou, W. S. et al. Cathepsin K is a critical protease in synovial fibroblast-mediated collagen degradation. Am. J. Pathol. 159, 2167–2177 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Huet, G. et al. Stimulation of the secretion of latent cysteine proteinase activity by tumor necrosis factor α and interleukin-1. Arthritis Rheum. 36, 772–780 (1993).

    CAS  PubMed  Google Scholar 

  21. Lemaire, R. et al. Selective induction of the secretion of cathepsins B and L by cytokines in synovial fibroblast-like cells. Br. J. Rheumatol. 36, 735–743 (1997).

    CAS  PubMed  Google Scholar 

  22. Kaneko, M. et al. Expression of proteinases and inflammatory cytokines in subchondral bone regions in the destructive joint of rheumatoid arthritis. Rheumatology (Oxford) 40, 247–255 (2001).

    CAS  Google Scholar 

  23. Trabandt, A., Gay, R. E., Fassbender, H. G. & Gay, S. Cathepsin B in synovial cells at the site of joint destruction in rheumatoid arthritis. Arthritis Rheum. 34, 1444–1451 (1991).

    CAS  PubMed  Google Scholar 

  24. Cunnane, G. et al. Synovial tissue protease gene expression and joint erosions in early rheumatoid arthritis. Arthritis Rheum. 44, 1744–1753 (2001).

    CAS  PubMed  Google Scholar 

  25. Fiedorczyk, M., Klimiuk, P. A., Sierakowski, S., Gindzienska-Sieskiewicz, E. & Chwiecko, J. Serum matrix metalloproteinases and tissue inhibitors of metalloproteinases in patients with early rheumatoid arthritis. J. Rheumatol. 33, 1523–1529 (2006).

    CAS  PubMed  Google Scholar 

  26. Litinsky, I. et al. The effects of leflunomide on clinical parameters and serum levels of IL-6, IL-10, MMP-1 and MMP-3 in patients with resistant rheumatoid arthritis. Cytokine 33, 106–110 (2006).

    CAS  PubMed  Google Scholar 

  27. Catrina, A. I. et al. Anti-tumour necrosis factor (TNF)-α therapy (etanercept) down-regulates serum matrix metalloproteinase (MMP)-3 and MMP-1 in rheumatoid arthritis. Rheumatology (Oxford) 41, 484–489 (2002).

    CAS  Google Scholar 

  28. Smith, G. N. Jr The role of collagenolytic matrix metalloproteinases in the loss of articular cartilage in osteoarthritis. Front. Biosci. 11, 3081–3095 (2006).

    CAS  PubMed  Google Scholar 

  29. Salminen-Mankonen, H. J., Morko, J. & Vuorio, E. Role of cathepsin K in normal joints and in the development of arthritis. Curr. Drug Targets 8, 315–323 (2007).

    CAS  PubMed  Google Scholar 

  30. Moz, S. et al. Spondyloarthritis: matrix metalloproteinasesas biomarkers of pathogenesis and response to tumor necrosis factor (TNF) inhibitors. Int. J. Mol. Sci. 18, E830 (2017).

    PubMed  Google Scholar 

  31. Vandooren, B. et al. Involvement of matrix metalloproteinases and their inhibitors in peripheral synovitis and down-regulation by tumor necrosis factor α blockade in spondylarthropathy. Arthritis Rheum. 50, 2942–2953 (2004).

    CAS  PubMed  Google Scholar 

  32. Cretu, D. et al. Identification of psoriatic arthritis mediators in synovial fluid by quantitative mass spectrometry. Clin. Proteom. 11, 27 (2014).

    Google Scholar 

  33. Jadon, D. R. et al. Serum bone-turnover biomarkers are associated with the occurrence of peripheral and axial arthritis in psoriatic disease: a prospective cross-sectional comparative study. Arthritis Res. Ther. 19, 210 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Sun, S. et al. The active form of MMP-3 is a marker of synovial inflammation and cartilage turnover in inflammatory joint diseases. BMC Musculoskelet. Disord. 15, 93 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J. D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Trouw, L. A., Pickering, M. C. & Blom, A. M. The complement system as a potential therapeutic target in rheumatic disease. Nat. Rev. Rheumatol. 13, 538–547 (2017).

    CAS  PubMed  Google Scholar 

  37. Oikonomopoulou, K. et al. Induction of complement C3a receptor responses by kallikrein-related peptidase 14. J. Immunol. 191, 3858–3866 (2013).

    CAS  PubMed  Google Scholar 

  38. Morgan, B. P., Daniels, R. H. & Williams, B. D. Measurement of terminal complement complexes in rheumatoid arthritis. Clin. Exp. Immunol. 73, 473–478 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Struglics, A. et al. The complement system is activated in synovial fluid from subjects with knee injury and from patients with osteoarthritis. Arthritis Res. Ther. 18, 223 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. Happonen, K. E. et al. Regulation of complement by cartilage oligomeric matrix protein allows for a novel molecular diagnostic principle in rheumatoid arthritis. Arthritis Rheum. 62, 3574–3583 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Happonen, K. E., Heinegard, D., Saxne, T. & Blom, A. M. Interactions of the complement system with molecules of extracellular matrix: relevance for joint diseases. Immunobiology 217, 1088–1096 (2012).

    CAS  PubMed  Google Scholar 

  42. Neumann, E. et al. Local production of complement proteins in rheumatoid arthritis synovium. Arthritis Rheum. 46, 934–945 (2002).

    CAS  PubMed  Google Scholar 

  43. Gulati, P., Guc, D., Lemercier, C., Lappin, D. & Whaley, K. Expression of the components and regulatory proteins of the classical pathway of complement in normal and diseased synovium. Rheumatol. Int. 14, 13–19 (1994).

    CAS  PubMed  Google Scholar 

  44. Bradley, K. et al. Synthesis of classical pathway complement components by chondrocytes. Immunology 88, 648–656 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nakagawa, K. et al. Complement C1s activation in degenerating articular cartilage of rheumatoid arthritis patients: immunohistochemical studies with an active form specific antibody. Ann. Rheum. Dis. 58, 175–181 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Happonen, K. E. et al. Serum COMP-C3b complexes in rheumatic diseases and relation to anti-TNF-α treatment. Arthritis Res. Ther. 14, R15 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Liszewski, M. K. et al. Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation. Immunity 39, 1143–1157 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. So, A. K. et al. Arthritis is linked to local and systemic activation of coagulation and fibrinolysis pathways. J. Thromb. Haemost. 1, 2510–2515 (2003).

    CAS  PubMed  Google Scholar 

  49. Busso, N. & Hamilton, J. A. Extravascular coagulation and the plasminogen activator/plasmin system in rheumatoid arthritis. Arthritis Rheum. 46, 2268–2279 (2002).

    CAS  PubMed  Google Scholar 

  50. Martel-Pelletier, J. et al. Plasmin, plasminogen activators and inhibitor in human osteoarthritic cartilage. J. Rheumatol. 18, 1863–1871 (1991).

    CAS  PubMed  Google Scholar 

  51. Hoppe, B. & Dorner, T. Coagulation and the fibrin network in rheumatic disease: a role beyond haemostasis. Nat. Rev. Rheumatol. 8, 738–746 (2012).

    CAS  PubMed  Google Scholar 

  52. Amara, U. et al. Molecular intercommunication between the complement and coagulation systems. J. Immunol. 185, 5628–5636 (2010).

    CAS  PubMed  Google Scholar 

  53. Varisco, P. A. et al. Effect of thrombin inhibition on synovial inflammation in antigen induced arthritis. Ann. Rheum. Dis. 59, 781–787 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Marty, I. et al. Amelioration of collagen-induced arthritis by thrombin inhibition. J. Clin. Invest. 107, 631–640 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Busso, N., Morard, C., Salvi, R., Peclat, V. & So, A. Role of the tissue factor pathway in synovial inflammation. Arthritis Rheum. 48, 651–659 (2003).

    CAS  PubMed  Google Scholar 

  56. Nakano, S., Ikata, T., Kinoshita, I., Kanematsu, J. & Yasuoka, S. Characteristics of the protease activity in synovial fluid from patients with rheumatoid arthritis and osteoarthritis. Clin. Exp. Rheumatol. 17, 161–170 (1999).

    CAS  PubMed  Google Scholar 

  57. Mihara, K. et al. Thrombin-mediated direct activation of proteinase-activated receptor-2: another target for thrombin signaling. Mol. Pharmacol. 89, 606–614 (2016).

    CAS  PubMed  Google Scholar 

  58. Hollenberg, M. D. & Compton, S. J. International Union of Pharmacology. XXVIII. Proteinase-activated receptors. Pharmacol. Rev. 54, 203–217 (2002).

    CAS  PubMed  Google Scholar 

  59. Chou, P. Y., Su, C. M., Huang, C. Y. & Tang, C. H. The characteristics of thrombin in osteoarthritic pathogenesis and treatment. Biomed. Res. Int. 2014, 407518 (2014).

    PubMed  PubMed Central  Google Scholar 

  60. Eissa, A. et al. Serum kallikrein-8 correlates with skin activity, but not psoriatic arthritis, in patients with psoriatic disease. Clin. Chem. Lab Med. 51, 317–325 (2013).

    CAS  PubMed  Google Scholar 

  61. Borgono, C. A. & Diamandis, E. P. The emerging roles of human tissue kallikreins in cancer. Nat. Rev. Cancer 4, 876–890 (2004).

    CAS  PubMed  Google Scholar 

  62. Sotiropoulou, G., Pampalakis, G. & Diamandis, E. P. Functional roles of human kallikrein-related peptidases. J. Biol. Chem. 284, 32989–32994 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Oikonomopoulou, K., Diamandis, E. P. & Hollenberg, M. D. Kallikrein-related peptidases: proteolysis and signaling in cancer, the new frontier. Biol. Chem. 391, 299–310 (2010).

    CAS  PubMed  Google Scholar 

  64. Moore, A. R. et al. Destruction of articular cartilage by alpha2 macroglobulin elastase complexes: role in rheumatoid arthritis. Ann. Rheum. Dis. 58, 109–113 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Miyata, J. et al. Cathepsin G: the significance in rheumatoid arthritis as a monocyte chemoattractant. Rheumatol. Int. 27, 375–382 (2007).

    CAS  PubMed  Google Scholar 

  66. Milner, J. M. et al. Matriptase is a novel initiator of cartilage matrix degradation in osteoarthritis. Arthritis Rheum. 62, 1955–1966 (2010).

    CAS  PubMed  Google Scholar 

  67. Wilkinson, D. J. et al. Matriptase induction of metalloproteinase-dependent aggrecanolysis in vitro and in vivo: promotion of osteoarthritic cartilage damage by multiple mechanisms. Arthritis Rheumatol. 69, 1601–1611 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nigrovic, P. A. & Lee, D. M. Synovial mast cells: role in acute and chronic arthritis. Immunol. Rev. 217, 19–37 (2007).

    CAS  PubMed  Google Scholar 

  69. Nakano, S. et al. Distinct expression of mast cell tryptase and protease activated receptor-2 in synovia of rheumatoid arthritis and osteoarthritis. Clin. Rheumatol. 26, 1284–1292 (2007).

    PubMed  Google Scholar 

  70. Buckley, M. G. et al. Mast cell activation in arthritis: detection of α- and β-tryptase, histamine and eosinophil cationic protein in synovial fluid. Clin. Sci. (Lond.) 93, 363–370 (1997).

    CAS  Google Scholar 

  71. Ricard-Blum, S. & Vallet, S. D. Proteases decode the extracellular matrix cryptome. Biochimie 122, 300–313 (2016).

    CAS  PubMed  Google Scholar 

  72. Kon, S. et al. A novel cryptic binding motif, LRSKSRSFQVSDEQY, in the C-terminal fragment of MMP-3/7-cleaved osteopontin as a novel ligand for α9β1 integrin is involved in the anti-type II collagen antibody-induced arthritis. PLoS ONE 9, e116210 (2014).

    PubMed  PubMed Central  Google Scholar 

  73. Williams, R. J. 3rd, Smith, R. L. & Schurman, D. J. Septic arthritis. Staphylococcal induction of chondrocyte proteolytic activity. Arthritis Rheum. 33, 533–541 (1990).

    PubMed  Google Scholar 

  74. Konig, M. F. et al. Defining the role of Porphyromonas gingivalis peptidylarginine deiminase (PPAD) in rheumatoid arthritis through the study of PPAD biology. Ann. Rheum. Dis. 74, 2054–2061 (2015).

    CAS  PubMed  Google Scholar 

  75. Maresz, K. J. et al. Porphyromonas gingivalis facilitates the development and progression of destructive arthritis through its unique bacterial peptidylarginine deiminase (PAD). PLoS Pathog. 9, e1003627 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Holzhausen, M., Spolidorio, L. C. & Vergnolle, N. Role of protease-activated receptor-2 in inflammation, and its possible implications as a putative mediator of periodontitis. Mem. Inst. Oswaldo Cruz 100 (Suppl. 1), 177–180 (2005).

    CAS  PubMed  Google Scholar 

  77. Ramachandran, R., Altier, C., Oikonomopoulou, K. & Hollenberg, M. D. Proteinases, their extracellular targets, and inflammatory signaling. Pharmacol. Rev. 68, 1110–1142 (2016).

    CAS  PubMed  Google Scholar 

  78. Neumann, E., Khawaja, K. & Muller-Ladner, U. G protein-coupled receptors in rheumatology. Nat. Rev. Rheumatol. 10, 429–436 (2014).

    CAS  PubMed  Google Scholar 

  79. Adams, M. N. et al. Structure, function and pathophysiology of protease activated receptors. Pharmacol. Ther. 130, 248–282 (2011).

    CAS  PubMed  Google Scholar 

  80. Morris, R., Winyard, P. G., Brass, L. F., Blake, D. R. & Morris, C. J. Thrombin receptor expression in rheumatoid and osteoarthritic synovial tissue. Ann. Rheum. Dis. 55, 841–843 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Xiang, Y. et al. Expression of proteinase-activated receptors (PAR)-2 in articular chondrocytes is modulated by IL-1β, TNF-α and TGF-βa. Osteoarthritis Cartilage 14, 1163–1173 (2006).

    CAS  PubMed  Google Scholar 

  82. Busso, N. et al. Evaluation of protease-activated receptor 2 in murine models of arthritis. Arthritis Rheum. 56, 101–107 (2007).

    CAS  PubMed  Google Scholar 

  83. Hirano, F. et al. Thrombin-induced expression of RANTES mRNA through protease activated receptor-1 in human synovial fibroblasts. Ann. Rheum. Dis. 61, 834–837 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Boileau, C. et al. Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study. Arthritis Res. Ther. 9, R121 (2007).

    PubMed  PubMed Central  Google Scholar 

  85. Abraham, L. A. et al. Expression of protease-activated receptor-2 by osteoblasts. Bone 26, 7–14 (2000).

    CAS  PubMed  Google Scholar 

  86. Lam, F. F. Role of protease-activated receptor 2 in joint inflammation. Arthritis Rheum. 56, 3514–3517 (2007).

    CAS  PubMed  Google Scholar 

  87. Palmer, H. S. et al. Protease-activated receptor 2 mediates the proinflammatory effects of synovial mast cells. Arthritis Rheum. 56, 3532–3540 (2007).

    CAS  PubMed  Google Scholar 

  88. Jackson, M. T. et al. Depletion of protease-activated receptor 2 but not protease-activated receptor 1 may confer protection against osteoarthritis in mice through extracartilaginous mechanisms. Arthritis Rheumatol. 66, 3337–3348 (2014).

    CAS  PubMed  Google Scholar 

  89. Crilly, A. et al. Immunomodulatory role of proteinase-activated receptor-2. Ann. Rheum. Dis. 71, 1559–1566 (2012).

    CAS  PubMed  Google Scholar 

  90. McDougall, J. J. et al. Triggering of proteinase-activated receptor 4 leads to joint pain and inflammation in mice. Arthritis Rheum. 60, 728–737 (2009).

    CAS  PubMed  Google Scholar 

  91. Ferrell, W. R. et al. Essential role for proteinase-activated receptor-2 in arthritis. J. Clin. Invest. 111, 35–41 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kelso, E. B. et al. Therapeutic promise of proteinase-activated receptor-2 antagonism in joint inflammation. J. Pharmacol. Exp. Ther. 316, 1017–1024 (2006).

    CAS  PubMed  Google Scholar 

  93. Xue, M. et al. Protease-activated receptor 2, rather than protease-activated receptor 1, contributes to the aggressive properties of synovial fibroblasts in rheumatoid arthritis. Arthritis Rheum. 64, 88–98 (2012).

    CAS  PubMed  Google Scholar 

  94. Tindell, A. G. et al. Correlation of protease-activated receptor-2 expression and synovitis in rheumatoid and osteoarthritis. Rheumatol. Int. 32, 3077–3086 (2012).

    CAS  PubMed  Google Scholar 

  95. Amiable, N. et al. Proteinase-activated receptor-2 gene disruption limits the effect of osteoarthritis on cartilage in mice: a novel target in joint degradation. J. Rheumatol. 38, 911–920 (2011).

    CAS  PubMed  Google Scholar 

  96. Ferrell, W. R., Kelso, E. B., Lockhart, J. C., Plevin, R. & McInnes, I. B. Protease-activated receptor 2: a novel pathogenic pathway in a murine model of osteoarthritis. Ann. Rheum. Dis. 69, 2051–2054 (2010).

    PubMed  Google Scholar 

  97. Yang, Y. H. et al. Reduction of arthritis severity in protease-activated receptor-deficient mice. Arthritis Rheum. 52, 1325–1332 (2005).

    CAS  PubMed  Google Scholar 

  98. Kelso, E. B. et al. Expression and proinflammatory role of proteinase-activated receptor 2 in rheumatoid synovium: ex vivo studies using a novel proteinase-activated receptor 2 antagonist. Arthritis Rheum. 56, 765–771 (2007).

    CAS  PubMed  Google Scholar 

  99. McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    CAS  PubMed  Google Scholar 

  100. Wojdasiewicz, P., Poniatowski, L. A. & Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014, 561459 (2014).

    PubMed  PubMed Central  Google Scholar 

  101. McDougall, J. J. Involvement of proteinase-activated receptor-4 in inflammatory joint disease. Inflamm. Res. 56, S354 (2007).

    Google Scholar 

  102. Busso, N. et al. Essential role of platelet activation via protease activated receptor 4 in tissue factor-initiated inflammation. Arthritis Res. Ther. 10, R42 (2008).

    PubMed  PubMed Central  Google Scholar 

  103. Weinberg, J. B., Pippen, A. M. & Greenberg, C. S. Extravascular fibrin formation and dissolution in synovial tissue of patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum. 34, 996–1005 (1991).

    CAS  PubMed  Google Scholar 

  104. Klos, A., Wende, E., Wareham, K. J. & Monk, P. N. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol. Rev. 65, 500–543 (2013).

    PubMed  Google Scholar 

  105. Grant, E. P. et al. Essential role for the C5a receptor in regulating the effector phase of synovial infiltration and joint destruction in experimental arthritis. J. Exp. Med. 196, 1461–1471 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Oikonomopoulou, K. et al. Proteinase-activated receptors, targets for kallikrein signaling. J. Biol. Chem. 281, 32095–32112 (2006).

    CAS  PubMed  Google Scholar 

  107. Vergnolle, N. Protease-activated receptors as drug targets in inflammation and pain. Pharmacol. Ther. 123, 292–309 (2009).

    CAS  PubMed  Google Scholar 

  108. McDougall, J. J. Arthritis and pain. Neurogenic origin of joint pain. Arthritis Res. Ther. 8, 220 (2006).

    PubMed  PubMed Central  Google Scholar 

  109. McDougall, J. J. & Linton, P. Neurophysiology of arthritis pain. Curr. Pain Headache Rep. 16, 485–491 (2012).

    PubMed  Google Scholar 

  110. Huesa, C. et al. Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology. Ann. Rheum. Dis. 75, 1989–1997 (2016).

    CAS  PubMed  Google Scholar 

  111. Muley, M. M. et al. Neutrophil elastase induces inflammation and pain in mouse knee joints via activation of proteinase-activated receptor-2. Br. J. Pharmacol. 173, 766–777 (2016).

    CAS  PubMed  Google Scholar 

  112. Russell, F. A. & McDougall, J. J. Proteinase activated receptor (PAR) involvement in mediating arthritis pain and inflammation. Inflamm. Res. 58, 119–126 (2009).

    CAS  PubMed  Google Scholar 

  113. Martin, L. et al. Thrombin receptor: an endogenous inhibitor of inflammatory pain, activating opioid pathways. Pain 146, 121–129 (2009).

    CAS  PubMed  Google Scholar 

  114. Asfaha, S., Brussee, V., Chapman, K., Zochodne, D. W. & Vergnolle, N. Proteinase-activated receptor-1 agonists attenuate nociception in response to noxious stimuli. Br. J. Pharmacol. 135, 1101–1106 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kawabata, A., Kawao, N., Kuroda, R., Tanaka, A. & Shimada, C. The PAR-1-activating peptide attenuates carrageenan-induced hyperalgesia in rats. Peptides 23, 1181–1183 (2002).

    CAS  PubMed  Google Scholar 

  116. Steinhoff, M. et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat. Med. 6, 151–158 (2000).

    CAS  PubMed  Google Scholar 

  117. Helyes, Z. et al. Involvement of transient receptor potential vanilloid 1 receptors in protease-activated receptor-2-induced joint inflammation and nociception. Eur. J. Pain 14, 351–358 (2010).

    CAS  PubMed  Google Scholar 

  118. Russell, F. A., Schuelert, N., Veldhoen, V. E., Hollenberg, M. D. & McDougall, J. J. Activation of PAR(2) receptors sensitizes primary afferents and causes leukocyte rolling and adherence in the rat knee joint. Br. J. Pharmacol. 167, 1665–1678 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Russell, F. A., Veldhoen, V. E., Tchitchkan, D. & McDougall, J. J. Proteinase-activated receptor-4 (PAR4) activation leads to sensitization of rat joint primary afferents via a bradykinin B2 receptor-dependent mechanism. J. Neurophysiol. 103, 155–163 (2010).

    CAS  PubMed  Google Scholar 

  120. Russell, F. A. et al. The pronociceptive effect of proteinase-activated receptor-4 stimulation in rat knee joints is dependent on mast cell activation. Pain 152, 354–360 (2011).

    CAS  PubMed  Google Scholar 

  121. Chen, Y., Yang, C. & Wang, Z. J. Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience 193, 440–451 (2011).

    CAS  PubMed  Google Scholar 

  122. Poole, D. P. et al. Protease-activated receptor 2 (PAR2) protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling. J. Biol. Chem. 288, 5790–5802 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Vellani, V. et al. Protease activated receptors 1 and 4 sensitize TRPV1 in nociceptive neurones. Mol. Pain 6, 61 (2010).

    PubMed  PubMed Central  Google Scholar 

  124. O'Conor, C. J., Leddy, H. A., Benefield, H. C., Liedtke, W. B. & Guilak, F. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc. Natl Acad. Sci. USA 111, 1316–1321 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Guilak, F., Leddy, H. A. & Liedtke, W. Transient receptor potential vanilloid 4: The sixth sense of the musculoskeletal system? Ann. NY Acad. Sci. 1192, 404–409 (2010).

    CAS  PubMed  Google Scholar 

  126. Lamande, S. R. et al. Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nat. Genet. 43, 1142–1146 (2011).

    CAS  PubMed  Google Scholar 

  127. Grant, A. D. et al. Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J. Physiol. 578, 715–733 (2007).

    CAS  PubMed  Google Scholar 

  128. Saifeddine, M. et al. GPCR-mediated EGF receptor transactivation regulates TRPV4 action in the vasculature. Br. J. Pharmacol. 172, 2493–2506 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Schaible, H. G. Nociceptive neurons detect cytokines in arthritis. Arthritis Res. Ther. 16, 470 (2014).

    PubMed  PubMed Central  Google Scholar 

  130. Ramachandran, R. et al. Neutrophil elastase acts as a biased agonist for proteinase-activated receptor-2 (PAR2). J. Biol. Chem. 286, 24638–24648 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Mihara, K., Ramachandran, R., Renaux, B., Saifeddine, M. & Hollenberg, M. D. Neutrophil elastase and proteinase-3 trigger G protein-biased signaling through proteinase-activated receptor-1 (PAR1). J. Biol. Chem. 288, 32979–32990 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Hollenberg, M. D. et al. Biased signalling and proteinase-activated receptors (PARs): targeting inflammatory disease. Br. J. Pharmacol. 171, 1180–1194 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhao, P., Metcalf, M. & Bunnett, N. W. Biased signaling of protease-activated receptors. Front. Endocrinol. (Lausanne) 5, 67 (2014).

    Google Scholar 

  134. Zhao, P. et al. Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4. J. Biol. Chem. 289, 27215–27234 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Sostegni, S. et al. Sensitisation of TRPV4 by PAR2 is independent of intracellular calcium signalling and can be mediated by the biased agonist neutrophil elastase. Pflugers Arch. 467, 687–701 (2015).

    CAS  PubMed  Google Scholar 

  136. Haerteis, S. et al. Proteolytic activation of the epithelial sodium channel (ENaC) by the cysteine protease cathepsin-S. Pflugers Arch. 464, 353–365 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Mobasheri, A., Barrett-Jolley, R., Shakibaei, M., Canessa, C. M. & Martin-Vasallo, P. in Mechanosensitivity in Cells and Tissues Ch. 20 (eds Kamkin, A. & Kiseleva, I.) (Academia, 2005).

    Google Scholar 

  138. Clark, A. K. & Malcangio, M. Microglial signalling mechanisms: cathepsin S and fractalkine. Exp. Neurol. 234, 283–292 (2012).

    CAS  PubMed  Google Scholar 

  139. Stefansson, K. et al. Activation of proteinase-activated receptor-2 by human kallikrein-related peptidases. J. Invest. Dermatol. 128, 18–25 (2008).

    CAS  PubMed  Google Scholar 

  140. Ramachandran, R., Noorbakhsh, F., DeFea, K. & Hollenberg, M. D. Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat. Rev. Drug Discov. 11, 69–86 (2012).

    CAS  PubMed  Google Scholar 

  141. Ramsay, A. J. et al. Kallikrein-related peptidase 4 (KLK4) initiates intracellular signaling via protease-activated receptors (PARs). KLK4 and PAR-2 are co-expressed during prostate cancer progression. J. Biol. Chem. 283, 12293–12304 (2008).

    CAS  PubMed  Google Scholar 

  142. Gratio, V. et al. Kallikrein-related peptidase 4: a new activator of the aberrantly expressed protease-activated receptor 1 in colon cancer cells. Am. J. Pathol. 176, 1452–1461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Briot, A. et al. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J. Exp. Med. 206, 1135–1147 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Boire, A. et al. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120, 303–313 (2005).

    CAS  PubMed  Google Scholar 

  145. Blackburn, J. S. & Brinckerhoff, C. E. Matrix metalloproteinase-1 and thrombin differentially activate gene expression in endothelial cells via PAR-1 and promote angiogenesis. Am. J. Pathol. 173, 1736–1746 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Trivedi, V. et al. Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell 137, 332–343 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Tressel, S. L. et al. A matrix metalloprotease-PAR1 system regulates vascular integrity, systemic inflammation and death in sepsis. EMBO Mol. Med. 3, 370–384 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Holzhausen, M. et al. Protease-activated receptor-2 activation: a major role in the pathogenesis of Porphyromonas gingivalis infection. Am. J. Pathol. 168, 1189–1199 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Lourbakos, A. et al. Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood 97, 3790–3797 (2001).

    CAS  PubMed  Google Scholar 

  150. Dommisch, H. et al. Protease-activated receptor 2 mediates human β-defensin 2 and CC chemokine ligand 20 mRNA expression in response to proteases secreted by Porphyromonas gingivalis. Infect. Immun. 75, 4326–4333 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Euzebio Alves, V. T. et al. Periodontal treatment downregulates protease-activated receptor 2 in human gingival crevicular fluid cells. Infect. Immun. 81, 4399–4407 (2013).

    PubMed  PubMed Central  Google Scholar 

  152. Chung, W. O., Hansen, S. R., Rao, D. & Dale, B. A. Protease-activated receptor signaling increases epithelial antimicrobial peptide expression. J. Immunol. 173, 5165–5170 (2004).

    CAS  PubMed  Google Scholar 

  153. Totaro, M. C. et al. Porphyromonas gingivalis and the pathogenesis of rheumatoid arthritis: analysis of various compartments including the synovial tissue. Arthritis Res. Ther. 15, R66 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Potempa, J., Mydel, P. & Koziel, J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 606–620 (2017).

    CAS  PubMed  Google Scholar 

  155. Kuruvilla, M. & Gurk-Turner, C. A review of warfarin dosing and monitoring. Proc. (Bayl. Univ. Med. Cent.) 14, 305–306 (2001).

    CAS  Google Scholar 

  156. Chen, B. et al. Characterization of thrombin-bound dabigatran effects on protease-activated receptor-1 expression and signaling in vitro. Mol. Pharmacol. 88, 95–105 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Morgan, B. P. & Harris, C. L. Complement, a target for therapy in inflammatory and degenerative diseases. Nat. Rev. Drug Discov. 14, 857–877 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Turk, B. Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug Discov. 5, 785–799 (2006).

    CAS  PubMed  Google Scholar 

  159. Fingleton, B. MMPs as therapeutic targets—still a viable option? Semin. Cell Dev. Biol. 19, 61–68 (2008).

    CAS  PubMed  Google Scholar 

  160. Liu, J. & Khalil, R. A. Matrix metalloproteinase inhibitors as investigational and therapeutic tools in unrestrained tissue remodeling and pathological disorders. Prog. Mol. Biol. Transl. Sci. 148, 355–420 (2017).

    PubMed  PubMed Central  Google Scholar 

  161. Close, D. R. Matrix metalloproteinase inhibitors in rheumatic diseases. Ann. Rheum. Dis. 60 (Suppl 3), iii62–ii67 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Erin, E. M. et al. Effects of a reversible β-tryptase and trypsin inhibitor (RWJ-58643) on nasal allergic responses. Clin. Exp. Allergy 36, 458–464 (2006).

    CAS  PubMed  Google Scholar 

  163. Hemmings, F. J., Farhan, M., Rowland, J., Banken, L. & Jain, R. Tolerability and pharmacokinetics of the collagenase-selective inhibitor Trocade in patients with rheumatoid arthritis. Rheumatology (Oxford) 40, 537–543 (2001).

    CAS  Google Scholar 

  164. Brandt, K. D. et al. Effects of doxycycline on progression of osteoarthritis: results of a randomized, placebo-controlled, double-blind trial. Arthritis Rheum. 52, 2015–2025 (2005).

    CAS  PubMed  Google Scholar 

  165. Jensen, M. R. et al. Structural basis for simvastatin competitive antagonism of complement receptor 3. J. Biol. Chem. 291, 16963–16976 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Goto, S. & Tomita, A. New antithrombotics for secondary prevention of acute coronary syndrome. Clin. Cardiol. 37, 178–187 (2014).

    PubMed  PubMed Central  Google Scholar 

  167. Pan H., Boucher, M. & Kaunelis, D. in CADTH Issues in Emerging Health Technologies Ch.148 (Ottawa (ON): Canadian Agency for Drugs and Technologies in Health, 2016).

    Google Scholar 

  168. Yau, M. K., Liu, L. & Fairlie, D. P. Toward drugs for protease-activated receptor 2 (PAR2). J. Med. Chem. 56, 7477–7497 (2013).

    CAS  PubMed  Google Scholar 

  169. Kuliopulos, A. & Covic, L. Blocking receptors on the inside: pepducin-based intervention of PAR signaling and thrombosis. Life Sci. 74, 255–262 (2003).

    CAS  PubMed  Google Scholar 

  170. Gurbel, P. A. et al. Cell-penetrating pepducin therapy targeting PAR1 in subjects with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 36, 189–197 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Sevigny, L. M. et al. Interdicting protease-activated receptor-2-driven inflammation with cell-penetrating pepducins. Proc. Natl Acad. Sci. USA 108, 8491–8496 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Alessandri-Haber, N., Dina, O. A., Joseph, E. K., Reichling, D. & Levine, J. D. A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J. Neurosci. 26, 3864–3874 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Patapoutian A., Tate, S. & Woolf, C. J. Transient receptor potential channels: targeting pain at the source. Nat. Rev. Drug Discov. 8, 55–68 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Kanju, P. et al. Small molecule dual-inhibitors of TRPV4 and TRPA1 for attenuation of inflammation and pain. Sci. Rep. 6, 26894 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Sowmya Viswanathan, Konstantinos Tselios and Alejandro Gómez-Aristizábal at the University Health Network, Toronto, Canada for critical discussions of this manuscript. The authors' ongoing work related to this field of research is supported by the Krembil Foundation (K.O. and V.C.) and the Canadian Institutes of Health Research (E.P.D. and M.D.H.).

Author information

Authors and Affiliations

Authors

Contributions

K.O. and V.C. researched the data for this article. All authors wrote this article, made substantial contributions to discussions of content and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Vinod Chandran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oikonomopoulou, K., Diamandis, E., Hollenberg, M. et al. Proteinases and their receptors in inflammatory arthritis: an overview. Nat Rev Rheumatol 14, 170–180 (2018). https://doi.org/10.1038/nrrheum.2018.17

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2018.17

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing