Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The transition of acute to chronic bowel inflammation in spondyloarthritis

Abstract

That gut and joint inflammation are linked in spondyloarthritis (SpA) has been recognized for almost three decades. Intriguingly, microscopic gut inflammation, which occurs frequently in patients with SpA, is an important risk factor for clinically overt Crohn's disease and ankylosing spondylitis. This Review describes current insights into the underlying mechanisms that lead to chronic gut inflammation in patients with SpA. We propose that the development of chronic bowel inflammation in these individuals occurs through a transition phase, in which inflammation evolves from an acute into a chronic state. Our transition model implies that different cell types are involved at different stages during disease progression, with stromal cells having an important role in chronicity. In addition, deficient regulatory feedback mechanisms or genetically determined alterations in antigen presentation, endoplasmic reticulum stress, autophagy or cytokine signaling might also favor a transition from self-limiting acute inflammation to chronic inflammation. We anticipate that this transition phase might be an important window for therapeutic intervention.

Key Points

  • Microscopic gut inflammation occurs in approximately two-thirds of patients with spondyloarthritis

  • Chronic inflammatory lesions are an important risk factor for the development of Crohn's disease and ankylosing spondylitis, therefore indicating a potential link between gut and joint inflammation

  • The transition of acute inflammatory lesions into chronic inflammatory lesions is influenced by deficient feedback of regulatory T cells

  • Mesenchymal cell types are important effector cells in the chronic phase of disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transition of gut inflammation from acute to chronic in spondyloarthritis.
Figure 2: A unifying concept linking gut and joint inflammation in SpA: transition model.

Similar content being viewed by others

References

  1. Dougados, M. & Baeten, D. Spondyloarthritis. Lancet 377, 2127–2137 (2011).

    Article  PubMed  Google Scholar 

  2. Sieper, J., Rudwaleit, M., Khan, M. A. & Braun, J. Concepts and epidemiology of spondyloarthritis. Best Pract. Res. Clin. Rheumatol. 20, 401–417 (2006).

    Article  PubMed  Google Scholar 

  3. van Tubergen, A. & Weber, U. Diagnosis and classification in spondyloarthritis: identifying a chameleon. Nat. Rev. Rheumatol. http://dx.doi.org/10.1038/nrrheum.2012.33

  4. Elewaut, D. & Matucci-Cerinic, M. Treatment of ankylosing spondylitis and extra-articular manifestations in everyday rheumatology practice. Rheumatology (Oxford) 48, 1029–1035 (2009).

    Article  CAS  Google Scholar 

  5. Sandborn, W. J. et al. Etanercept for active Crohn's disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology 121, 1088–1094 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. de Vlam, K. et al. Spondyloarthropathy is underestimated in inflammatory bowel disease: prevalence and HLA association. J. Rheumatol. 27, 2860–2865 (2000).

    CAS  PubMed  Google Scholar 

  7. Mielants, H. et al. The evolution of spondylarthropathies in relation to gut histology. II. Histological aspects. J. Rheumatol. 22, 2273–2278 (1995).

    CAS  PubMed  Google Scholar 

  8. Altomonte, L. et al. Clinically silent inflammatory gut lesions in undifferentiated spondyloarthropathies. Clin. Rheumatol. 13, 565–570 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Leirisalo-Repo, M., Turunen, U., Stenman, S., Helenius, P. & Seppälä, K. High frequency of silent inflammatory bowel disease in spondylarthropathy. Arthritis Rheum. 37, 23–31 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Simenon, G., Van Gossum, A., Adler, M., Rickaert, F. & Appelboom, T. Macroscopic and microscopic gut lesions in seronegative spondyloarthropathies. J. Rheumatol. 17, 1491–1494 (1990).

    CAS  PubMed  Google Scholar 

  11. Mielants, H., Veys, E., Cuvelier, C. & De Vos, M. Course of gut inflammation in spondylarthropathies and therapeutic consequences. Baillieres Clin. Rheumatol. 10, 147–164 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Schatteman, L. et al. Gut inflammation in psoriatic arthritis: a prospective ileocolonoscopic study. J. Rheumatol. 22, 680–683 (1995).

    CAS  PubMed  Google Scholar 

  13. Mielants, H. et al. Gut inflammation in children with late onset pauciarticular juvenile chronic arthritis and evolution to adult spondyloarthropathy—a prospective study. J. Rheumatol. 20, 1567–1572 (1993).

    CAS  PubMed  Google Scholar 

  14. Jacques, P. & Elewaut, D. Joint expedition: linking gut inflammation to arthritis. Mucosal Immunol. 1, 364–371 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Mielants, H. et al. The evolution of spondyloarthropathies in relation to gut histology. III. Relation between gut and joint. J. Rheumatol. 22, 2279–2284 (1995).

    CAS  PubMed  Google Scholar 

  16. Cuvelier, C. et al. Histopathology of intestinal inflammation related to reactive arthritis. Gut 28, 394–401 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mielants, H. et al. Gut inflammation in the spondyloarthropathies: clinical, radiologic, biologic and genetic features in relation to the type of histology. A prospective study. J. Rheumatol. 18, 1542–1551 (1991).

    CAS  PubMed  Google Scholar 

  18. Reveille, J. D. Genetics of spondyloarthritis—beyond the MHC. Nat. Rev. Rheumatol. http://dx.doi.org/10.1038/nrrheum.2012.41

  19. Thjodleifsson, B., Geirsson, A. J., Björnsson, S. & Bjarnason, I. A common genetic background for inflammatory bowel disease and ankylosing spondylitis: a genealogic study in Iceland. Arthritis Rheum. 56, 2633–2639 (2007).

    Article  PubMed  Google Scholar 

  20. Reveille, J. D. et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat. Genet. 42, 123–127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Abraham, C. & Cho, J. Inflammatory bowel disease. N. Engl. J. Med. 361, 2066–2078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cho, J. H. & Brant, S. R. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology 140, 1704–1721 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burton, P. R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Strange, A. et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat. Genet. 42, 985–990 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yan, J. B. et al. In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules. J. Exp. Med. 203, 647–659 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cui, X. L. et al. Identification of ARTS-1 as a novel TNFR1-binding protein that promotes TNFR1 ectodomain shedding. J. Clin. Invest. 110, 515–526 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reveille, J. D. The genetic basis of spondyloarthritis. Ann. Rheum. Dis. 70 (Suppl. 1), i44–i50 (2011).

    Article  PubMed  Google Scholar 

  30. Evans, D. M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Danoy, P. et al. Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn's disease. PLoS Genet. 6, e1001195 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baraliakos, X. et al. Interleukin-17A blockade with secukinumab reduces spinal inflammation in patients with ankylosing spondylitis as early as week 6, as detected by magnetic resonance imaging [abstract]. Arthritis Rheum. 63, 2486D (2011).

    Google Scholar 

  33. Hueber, W. et al. Inhibition of IL-17A by secukinumab is ineffective for Crohn's disease (CD). J. Crohns Colitis 5, S6–S7 (2011).

    Google Scholar 

  34. Leonardi, C. L. et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 371, 1665–1674 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Gottlieb, A. et al. Ustekinumab, a human interleukin 12/23 monoclonal antibody, for psoriatic arthritis: randomised, double-blind, placebo-controlled, crossover trial. Lancet 373, 633–640 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Sandborn, W. J. et al. A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn's disease. Gastroenterology 135, 1130–1141 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Sieper, J. Developments in therapy for spondyloarthritis. Nat. Rev. Rheumatol. http://dx.doi.org/10.1038/nrrheum.2012.40

  38. Chen, C., Zhang, X. & Wang, Y. Analysis of JAK2 and STAT3 polymorphisms in patients with ankylosing spondylitis in Chinese Han population. Clin. Immunol. 136, 442–446 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Zhernakova, A. et al. Genetic analysis of innate immunity in Crohn's disease and ulcerative colitis identifies two susceptibility loci harboring CARD9 and IL18RAP. Am. J. Hum. Genet. 82, 1202–1210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pointon, J. J. et al. Elucidating the chromosome 9 association with AS; CARD9 is a candidate gene. Genes Immun. 11, 490–496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kugathasan, S. et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat. Genet. 40, 1211–1215 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Laukens, D. et al. CARD15 gene polymorphisms in patients with spondyloarthropathies identify a specific phenotype previously related to Crohn's disease. Ann. Rheum. Dis. 64, 930–935 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Vermeulen, N., Vermeire, S., Rutgeerts, P. & Bossuyt, X. Serological markers in inflammatory bowel disease. Immuno Analyse et Biologie Spécialisée 23, 358–367 (2008).

    Article  Google Scholar 

  44. Hoffman, I. E. et al. Anti-Saccharomyces cerevisiae IgA antibodies are raised in ankylosing spondylitis and undifferentiated spondyloarthropathy. Ann. Rheum. Dis. 62, 455–459 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. de Vries, M. et al. pANCA, ASCA, and OmpC antibodies in patients with ankylosing spondylitis without inflammatory bowel disease. J. Rheumatol. 37, 2340–2344 (2010).

    Article  PubMed  Google Scholar 

  46. Foell, D., Wittkowski, H. & Roth, J. Monitoring disease activity by stool analyses: from occult blood to molecular markers of intestinal inflammation and damage. Gut 58, 859–868 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Mundwiler, M. L. et al. Inflammatory bowel disease serologies in ankylosing spondylitis patients: a pilot study. Arthritis Res. Ther. 11, R177 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Klingberg, E., Carlsten, H., Hilme, E., Hedberg, M. & Forsblad-d'Elia, H. Calprotectin in ankylosing spondylitis—frequently elevated in feces, but normal in serum. Scand. J. Gastroenterol. http://dx.doi.org/10.3109/00365521.2011.648953.

  49. Bjarnason, I. et al. Subclinical intestinal inflammation and sacroiliac changes in relatives of patients with ankylosing spondylitis. Gastroenterology 125, 1598–1605 (2003).

    Article  PubMed  Google Scholar 

  50. Sartor, R. B. Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. Nat. Clin. Pract. Gastroenterol. Hepatol. 3, 390–407 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Ott, S. J. et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53, 685–693 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104, 13780–13785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Friswell, M., Campbell, B. & Rhodes, J. The role of bacteria in the pathogenesis of inflammatory bowel disease. Gut Liver 4, 295–306 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kang, S. et al. Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray. Inflamm. Bowel Dis. 16, 2034–2042 (2010).

    Article  PubMed  Google Scholar 

  55. Tannock, G. W. The bowel microbiota and inflammatory bowel diseases. Int. J. Inflam. 2010, 954051 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cebra, J. J., Periwal, S. B., Lee, G., Lee, F. & Shroff, K. E. Development and maintenance of the gut-associated lymphoid tissue (GALT): the roles of enteric bacteria and viruses. Dev. Immunol. 6, 13–18 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Glaister, J. R. Factors affecting the lymphoid cells in the small intestinal epithelium of the mouse. Int. Arch. Allergy Appl. Immunol. 45, 719–730 (1973).

    Article  CAS  PubMed  Google Scholar 

  58. Taurog, J. D. et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 180, 2359–2364 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Rosenbaum, J. T. & Davey, M. P. Time for a gut check: evidence for the hypothesis that HLA-B27 predisposes to ankylosing spondylitis by altering the microbiome. Arthritis Rheum. 63, 3195–3198 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Benjamin, R. & Parham, P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol. Today 11, 137–142 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. Kollnberger, S. et al. Cell-surface expression and immune receptor recognition of HLA-B27 homodimers. Arthritis Rheum. 46, 2972–2982 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Wehkamp, J. et al. Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett. 580, 5344–5350 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Wehkamp, J. et al. Reduced Paneth cell α-defensins in ileal Crohn's disease. Proc. Natl Acad. Sci. USA 102, 18129–18234 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ciccia, F. et al. Over-expression of paneth cell-derived anti-microbial peptides in the gut of patients with ankylosing spondylitis and subclinical intestinal inflammation. Rheumatology (Oxford) 49, 2076–2083 (2010).

    Article  CAS  Google Scholar 

  65. Ciccia, F. et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 60, 955–965 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Wu, L. & Van Kaer, L. Natural killer T cells and autoimmune disease. Curr. Mol. Med. 9, 4–14 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Wing, K. & Sakaguchi, S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat. Immunol. 11, 7–13 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. von Boehmer, H. Mechanisms of suppression by suppressor T cells. Nat. Immunol. 6, 338–344 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Tupin E, Kinjo Y, Kronenberg M. The unique role of natural killer T cells in the response to microorganisms. Nat. Rev. Microbiol. 5, 405–417 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Maul, J. et al. Peripheral and intestinal regulatory CD4+ CD25high T cells in inflammatory bowel disease. Gastroenterology 128, 1868–1878 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Saruta, M. et al. Characterization of FOXP3+CD4+ regulatory T cells in Crohn's disease. Clin. Immunol. 125, 281–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Ciccia, F. et al. Expansion of intestinal CD4+CD25high TREG cells in patients with ankylosing spondylitis: a putative role for interleukin-10 in preventing intestinal TH17 response. Arthritis Rheum. 62, 3625–3634 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Boschetti, G. et al. Therapy with anti-TNFα antibody enhances number and function of FOXP3+ regulatory T cells in inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 160–170 (2011).

    Article  PubMed  Google Scholar 

  74. Di Sabatino, A. et al. Peripheral regulatory T cells and serum transforming growth factor-β: relationship with clinical response to infliximab in Crohn's disease. Inflamm. Bowel Dis. 16, 1891–1897 (2010).

    Article  PubMed  Google Scholar 

  75. Cao, D., van Vollenhoven, R., Klareskog, L., Trollmo, C. & Malmström, V. CD25brightCD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res. Ther. 6, R335–R346 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Appel, H. et al. Synovial and peripheral blood CD4+FOXP3+ T cells in spondyloarthritis. J. Rheumatol. 38, 2445–2451 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Jacques, P. et al. Invariant natural killer T cells are natural regulators of murine spondylarthritis. Arthritis Rheum. 62, 988–999 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Baeten, D. et al. Comparative study of the synovial histology in rheumatoid arthritis, spondyloarthropathy, and osteoarthritis: influence of disease duration and activity. Ann. Rheum. Dis. 59, 945–953 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Baeten, D. et al. Impaired TH1 cytokine production in spondyloarthropathy is restored by anti-TNFα. Ann. Rheum. Dis. 60, 750–755 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cañete, J. D. et al. Differential TH1/TH2 cytokine patterns in chronic arthritis: interferon γ is highly expressed in synovium of rheumatoid arthritis compared with seronegative spondyloarthropathies. Ann. Rheum. Dis. 59, 263–268 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Baeten, D. et al. Macrophages expressing the scavenger receptor CD163: a link between immune alterations of the gut and synovial inflammation in spondyloarthropathy. J. Pathol. 196, 343–350 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Melis, L. et al. Systemic levels of IL-23 are strongly associated with disease activity in rheumatoid arthritis but not spondyloarthritis. Ann. Rheum. Dis. 69, 618–623 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Melis, L. & Elewaut, D. Progress in spondyloarthritis. Immunopathogenesis of spondyloarthritis: which cells drive disease? Arthritis Res. Ther. 11, 233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rahman P. et al. Association of interleukin-23 receptor variants with ankylosing spondylitis. Arthritis Rheum. 58, 1020–1025 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. DeLay, M. L. et al. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with TH17 activation in transgenic rats. Arthritis Rheum. 60, 2633–2643 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Appel, H. et al. Analysis of IL-17+ cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the TH17-mediated adaptive immune response. Arthritis Res. Ther. 13, R95 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Armaka, M. et al. Mesenchymal cell targeting by TNF as a common pathogenic principle in chronic inflammatory joint and intestinal diseases. J. Exp. Med. 205, 331–337 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Roulis, M., Armaka, M., Manoloukos, M., Apostolaki, M. & Kollias, G. Intestinal epithelial cells as producers but not targets of chronic TNF suffice to cause murine Crohn-like pathology. Proc. Natl Acad. Sci. USA 108, 5396–5401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sugimoto K. et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest. 118, 534–544 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wolk K. et al. IL-22 induces lipopolysaccharide-binding protein in hepatocytes: a potential systemic role of IL-22 in Crohn's disease. J. Immunol. 178, 5973–5981 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hindryckx, P. et al. Subclinical gut inflammation in spondyloarthritis is associated with a pro-angiogenic intestinal mucosal phenotype. Ann. Rheum. Dis. 70, 2044–2048 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L. Van Praet and P. Jacques contributed equally to researching data for the article, discussing the content of the article and writing the article. F. Van den Bosch and D. Elewaut substantially contributed to discussions of the article content, wrote the article and reviewed and edited the manuscript before submission. D. Elewaut also researched some of the data for the article.

Corresponding author

Correspondence to Dirk Elewaut.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Praet, L., Jacques, P., Van den Bosch, F. et al. The transition of acute to chronic bowel inflammation in spondyloarthritis. Nat Rev Rheumatol 8, 288–295 (2012). https://doi.org/10.1038/nrrheum.2012.42

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.42

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing