Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of peripheral nerve fibres in acute and chronic inflammation in arthritis

Abstract

The peripheral nervous system takes an active part in inflammatory processes by regulating effector cell function and reallocation of energy to the immune system. During acute inflammation, rapid neuronal reorganization and change of activity takes place. The hallmarks of this process are an increase in systemic sympathetic activity, a decrease in systemic parasympathetic activity and loss of sympathetic nerve fibres from sites of inflammation concomitant with increased innervation with sensory nerve fibres and increased sensory nerve fibre activity. On a systemic level, the increase in sympathetic activity (and decrease in parasympathetic activity) is necessary to provide enough energy to nourish the activated immune system. In locally inflamed tissue, the decrease in sympathetic nerve fibre density results in reduced anti-inflammatory signalling and, together with neuropeptides released from sensory nerve fibres, promotes local inflammation. In acute inflammation, this 'inflammatory configuration' of the peripheral nervous system favours the rapid clearance of antigenic threats. However, in chronic autoimmune inflammation, these changes of the peripheral nervous system lead to an unfavourable situation with ongoing energy reallocation and continuous local destruction. As an example of a chronic inflammatory condition, we discuss evidence for neuroimmune regulation in autoimmune arthritis with a focus on the sympathetic nervous system.

Key Points

  • The peripheral nervous system has an active and important role in every inflammatory process; for example, by directly influencing immune effector cells and by regulating energy supply to the immune system

  • The sympathetic, parasympathetic and sensory branches of the peripheral nervous system can have proinflammatory or anti-inflammatory effects, or both, depending on their site of action, nerve fibre density and timing

  • During inflammation, neuronal reorganization enables the establishment of a 'proinflammatory neuronal configuration' locally (at the site of inflammation and in lymphoid organs) and systemically (at the whole-body level)

  • This neuronal configuration is favourable for the rapid clearance of antigen in acute inflammatory processes, but is unfavourable in chronic inflammation and leads to continuous loss of bodily energy, water retention and support of ongoing tissue destruction

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The components of a polymodal nociceptor.
Figure 2: Restructuring of neuronal innervation during inflammation leading to loss of sympathetic nerve fibres and sprouting of sensory nerve fibres in inflamed tissue.
Figure 3: Timescale of inflammation.
Figure 4: Current model of sympathetic neuroimmune regulation in collagen-type II induced arthritis.

Similar content being viewed by others

References

  1. Kolodkin, A. L. & Tessier-Lavigne, M. Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harb. Perspect. Biol. 3, a001727 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Nance, D. M. & Sanders, V. M. Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav. Immun. 21, 736–745 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rosas-Ballina, M. & Tracey, K. J. The neurology of the immune system: neural reflexes regulate immunity. Neuron 64, 28–32 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Straub, R. H., Cutolo, M., Buttgereit, F. & Pongratz, G. Energy regulation and neuroendocrine–immune control in chronic inflammatory diseases. J. Intern. Med. 267, 543–560 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Millan, M. J. The induction of pain: an integrative review. Prog. Neurobiol. 57, 1–164 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, T., Gao, Y. J. & Ji, R. R. Emerging role of Toll-like receptors in the control of pain and itch. Neurosci. Bull. 28, 131–144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carolan, E. J. & Casale, T. B. Effects of neuropeptides on neutrophil migration through noncellular and endothelial barriers. J. Allergy Clin. Immunol. 92, 589–598 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Saban, M. R., Saban, R., Bjorling, D. & Haak-Frendscho, M. Involvement of leukotrienes, TNF-α, and the LFA-1/ICAM-1 interaction in substance P-induced granulocyte infiltration. J. Leukoc. Biol. 61, 445–451 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Hood, V. C., Cruwys, S. C., Urban, L. & Kidd, B. L. Differential role of neurokinin receptors in human lymphocyte and monocyte chemotaxis. Regul. Pept. 96, 17–21 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Smith, C. H., Barker, J. N., Morris, R. W., MacDonald, D. M. & Lee, T. H. Neuropeptides induce rapid expression of endothelial cell adhesion molecules and elicit granulocytic infiltration in human skin. J. Immunol. 151, 3274–3282 (1993).

    CAS  PubMed  Google Scholar 

  12. Birklein, F. & Schmelz, M. Neuropeptides, neurogenic inflammation and complex regional pain syndrome (CRPS). Neurosci. Lett. 437, 199–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Straub, R. H. Evolutionary medicine and chronic inflammatory state—known and new concepts in pathophysiology. J. Mol. Med. (Berl.) 90, 523–534 (2012).

    Article  Google Scholar 

  14. Besedovsky, H. O. & del Rey, A. Immune–neuro–endocrine interactions: facts and hypotheses. Endocr. Rev. 17, 64–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Dhabhar, F. S., Miller, A. H., Stein, M., McEwen, B. S. & Spencer, R. L. Diurnal and acute stress-induced changes in distribution of peripheral blood leukocyte subpopulations. Brain Behav. Immun. 8, 66–79 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Dhabhar, F. S. & McEwen, B. S. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav. Immun. 11, 286–306 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Benschop, R. J., Rodriguez-Feuerhahn, M. & Schedlowski, M. Catecholamine-induced leukocytosis: early observations, current research, and future directions. Brain Behav. Immun. 10, 77–91 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Schramm, L. P. Spinal sympathetic interneurons: their identification and roles after spinal cord injury. Prog. Brain Res. 152, 27–37 (2006).

    Article  PubMed  Google Scholar 

  19. Maestroni, G. J. Short exposure of maturing, bone marrow-derived dendritic cells to norepinephrine: impact on kinetics of cytokine production and Th development. J. Neuroimmunol. 129, 106–114 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Maestroni, G. J. Dendritic cell migration controlled by α1b-adrenergic receptors. J. Immunol. 165, 6743–6747 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Straub, R. H. et al. Neurotransmitters of the sympathetic nerve terminal are powerful chemoattractants for monocytes. J. Leukoc. Biol. 67, 553–558 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Chen, Y., Michaelis, M., Janig, W. & Devor, M. Adrenoreceptor subtype mediating sympathetic-sensory coupling in injured sensory neurons. J. Neurophysiol. 76, 3721–3730 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Gonzales, R., Goldyne, M. E., Taiwo, Y. O. & Levine, J. D. Production of hyperalgesic prostaglandins by sympathetic postganglionic neurons. J. Neurochem. 53, 1595–1598 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Spiegel, A. et al. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat. Immunol. 8, 1123–1131 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Speidl, W. S. et al. Catecholamines potentiate LPS-induced expression of MMP-1 and MMP-9 in human monocytes and in the human monocytic cell line U937: possible implications for peri-operative plaque instability. FASEB J. 18, 603–605 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, H. et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421, 384–388 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Vida, G. et al. β2-adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB J. 25, 4476–4485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goldstein, R. S. et al. Cholinergic anti-inflammatory pathway activity and high mobility group box-1 (HMGB1) serum levels in patients with rheumatoid arthritis. Mol. Med. 13, 210–215 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Rosas-Ballina, M. et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc. Natl Acad. Sci. USA 105, 11008–11013 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saeed, R. W. et al. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J. Exp. Med. 201, 1113–1123 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miller, L. E., Justen, H. P., Scholmerich, J. & Straub, R. H. The loss of sympathetic nerve fibers in the synovial tissue of patients with rheumatoid arthritis is accompanied by increased norepinephrine release from synovial macrophages. FASEB J. 14, 2097–2107 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Lorton, D., Lubahn, C., Felten, S. Y. & Bellinger, D. Norepinephrine content in primary and secondary lymphoid organs is altered in rats with adjuvant-induced arthritis. Mech. Ageing Dev. 94, 145–163 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Ruff, M. R., Wahl, S. M. & Pert, C. B. Substance P receptor-mediated chemotaxis of human monocytes. Peptides 6 (Suppl. 2), 107–111 (1985).

    Article  CAS  PubMed  Google Scholar 

  35. Chalothorn, D., Zhang, H., Clayton, J. A., Thomas, S. A. & Faber, J. E. Catecholamines augment collateral vessel growth and angiogenesis in hindlimb ischemia. Am. J. Physiol. Heart Circ. Physiol. 289, H947–H959 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Castellani, M. L. et al. Stimulation of CCL2 (MCP-1) and CCL2 mRNA by substance P in LAD2 human mast cells. Transl. Res. 154, 27–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Castellani, M. L. et al. Neuropeptide substance P induces mRNA expression and secretion of CXCL8 chemokine, and HDC in human umbilical cord blood mast cells. Clin. Invest. Med. 31, E362–E372 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Raap, T. et al. Neurotransmitter modulation of interleukin 6 (IL-6) and IL-8 secretion of synovial fibroblasts in patients with rheumatoid arthritis compared to osteoarthritis. J. Rheumatol. 27, 2558–2565 (2000).

    CAS  PubMed  Google Scholar 

  39. Serra, M. C., Calzetti, F., Ceska, M. & Cassatella, M. A. Effect of substance P on superoxide anion and IL-8 production by human PMNL. Immunology 82, 63–69 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kavelaars, A., van de, P. M., Zijlstra, J. & Heijnen, C. J. β2-adrenergic activation enhances interleukin-8 production by human monocytes. J. Neuroimmunol. 77, 211–216 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. McHale, N. G., Allen, J. M. & Iggulden, H. L. Mechanism of α-adrenergic excitation in bovine lymphatic smooth muscle. Am. J. Physiol. 252, H873–H878 (1987).

    CAS  PubMed  Google Scholar 

  42. Allen, J. M., Iggulden, H. L. & McHale, N. G. β-adrenergic inhibition of bovine mesenteric lymphatics. J. Physiol. 374, 401–411 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maestroni, G. J. & Mazzola, P. Langerhans cells β2-adrenoceptors: role in migration, cytokine production, Th priming and contact hypersensitivity. J. Neuroimmunol. 144, 91–99 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Ackerman, K. D., Bellinger, D. L., Felten, S. Y. & Felten, D. L. in Psychoneuroimmunology (eds Ader, R., Felten, D. L. & Cohen, N.) 71–125 (Academic Press, New York, 1991).

    Book  Google Scholar 

  45. Bellinger, D. L. et al. Sympathetic nervous system and lymphocyte proliferation in the Fischer 344 rat spleen: a longitudinal study. Neuroimmunomodulation. 15, 260–271 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Kohm, A. P., Tang, Y., Sanders, V. M. & Jones, S. B. Activation of antigen-specific CD4+ TH2 cells and B cells in vivo increases norepinephrine release in the spleen and bone marrow. J. Immunol. 165, 725–733 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Sitkovsky, M. V. Use of the A2A adenosine receptor as a physiological immunosuppressor and to engineer inflammation in vivo. Biochem. Pharmacol. 65, 493–501 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Sanders, V. M. & Straub, R. H. Norepinephrine, the β-adrenergic receptor, and immunity. Brain Behav. Immun. 16, 290–332 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Pongratz, G. et al. The level of IgE produced by a B cell is regulated by norepinephrine in a p38 MAPK- and CD23-dependent manner. J. Immunol. 177, 2926–2938 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Lajevic, M. D., Suleiman, S., Cohen, R. L. & Chambers, D. A. Activation of p38 mitogen-activated protein kinase by norepinephrine in T-lineage cells. Immunology 132, 197–208 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McAlees, J. W. & Sanders, V. M. Hematopoietic protein tyrosine phosphatase mediates β2-adrenergic receptor-induced regulation of p38 mitogen-activated protein kinase in B lymphocytes. Mol. Cell Biol. 29, 675–686 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Shenoy, S. K. & Lefkowitz, R. J. β-arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol. Sci. 32, 521–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Reynolds, M. L. & Fitzgerald, M. Long-term sensory hyperinnervation following neonatal skin wounds. J. Comp. Neurol. 358, 487–498 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Lorton, D. et al. Changes in the density and distribution of sympathetic nerves in spleens from Lewis rats with adjuvant-induced arthritis suggest that an injury and sprouting response occurs. J. Comp Neurol. 489, 260–273 (2005).

    Article  PubMed  Google Scholar 

  55. Straub, R. H., Rauch, L., Fassold, A., Lowin, T. & Pongratz, G. Neuronally released sympathetic neurotransmitters stimulate splenic interferon-gamma secretion from T cells in early type II collagen-induced arthritis. Arthritis Rheum. 58, 3450–3460 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Mei, Q., Mundinger, T. O., Lernmark, A. & Taborsky, G. J. Jr. Early, selective, and marked loss of sympathetic nerves from the islets of BioBreeder diabetic rats. Diabetes 51, 2997–3002 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Lorton, D. et al. Differences in the injury/sprouting response of splenic noradrenergic nerves in Lewis rats with adjuvant-induced arthritis compared with rats treated with 6-hydroxydopamine. Brain Behav. Immun. 23, 276–285 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Straub, R. H., Lowin, T., Klatt, S., Wolff, C. & Rauch, L. Increased density of sympathetic nerve fibers in metabolically activated fat tissue surrounding human synovium and mouse lymph nodes in arthritis. Arthritis Rheum. 63, 3234–3242 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Spengler, R. N., Chensue, S. W., Giacherio, D. A., Blenk, N. & Kunkel, S. L. Endogenous norepinephrine regulates tumor necrosis factor-α production from macrophages in vitro. J. Immunol. 152, 3024–3031 (1994).

    CAS  PubMed  Google Scholar 

  60. Flierl, M. A. et al. Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response. PLoS ONE 4, e4414 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Capellino, S. et al. Catecholamine-producing cells in the synovial tissue during arthritis: modulation of sympathetic neurotransmitters as new therapeutic target. Ann. Rheum Dis. 69, 1853–1860 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Wahle, M. et al. Disease activity related catecholamine response of lymphocytes from patients with rheumatoid arthritis. Ann. NY Acad. Sci. 876, 287–296 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Baerwald, C. G. et al. Reduced catecholamine response of lymphocytes from patients with rheumatoid arthritis. Immunobiology 200, 77–91 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Heijnen, C. J. et al. Functional α1-adrenergic receptors on leukocytes of patients with polyarticular juvenile rheumatoid arthritis. J. Neuroimmunol. 71, 223–226 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Rouppe, v.d., V, Kavelaars, A., van de, P. M. & Heijnen, C. J. Neuroendocrine mediators up-regulate α1b- and α1d-adrenergic receptor subtypes in human monocytes. J. Neuroimmunol. 95, 165–173 (1999).

    Article  Google Scholar 

  66. Aloe, L. et al. The synovium of transgenic arthritic mice expressing human tumor necrosis factor contains a high level of nerve growth factor. Growth Factors 9, 149–155 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Levi-Montalcini, R. Effects of mouse tumor transplantation on the nervous system. Ann. NY Acad. Sci. 55, 330–344 (1952).

    Article  CAS  PubMed  Google Scholar 

  68. Miller, L. E. et al. Increased prevalence of semaphorin 3C, a repellent of sympathetic nerve fibers, in the synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum. 50, 1156–1163 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Fassold, A. et al. Soluble neuropilin-2, a nerve repellent receptor, is increased in rheumatoid arthritis synovium and aggravates sympathetic fiber repulsion and arthritis. Arthritis Rheum. 60, 2892–2901 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Bellinger, D. L. et al. Sympathetic modulation of immunity: relevance to disease. Cell. Immunol. 252, 27–56 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McAlees, J. W. et al. Epigenetic regulation of β2-adrenergic receptor expression in TH1 and TH2 cells. Brain Behav. Immun. 25, 408–415 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Kin, N. W. & Sanders, V. M. It takes nerve to tell T and B cells what to do. J. Leukoc. Biol. 79, 1093–1104 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Bhowmick, S. et al. The sympathetic nervous system modulates CD4+FOXP3+ regulatory T cells via a TGF-β-dependent mechanism. J. Leukoc. Biol. 86, 1275–1283 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Grebe, K. M. et al. Sympathetic nervous system control of anti-influenza CD8+ T cell responses. Proc. Natl Acad. Sci. USA 106, 5300–5305 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Härle, P., Pongratz, G., Albrecht, J., Tarner, I. H. & Straub, R. H. An early sympathetic nervous system influence exacerbates collagen-induced arthritis via CD4+CD25+ cells. Arthritis Rheum. 58, 2347–2355 (2008).

    Article  PubMed  CAS  Google Scholar 

  76. Payan, D. G., Brewster, D. R. & Goetzl, E. J. Specific stimulation of human T lymphocytes by substance P. J. Immunol. 131, 1613–1615 (1983).

    CAS  PubMed  Google Scholar 

  77. Laurenzi, M. A., Persson, M. A., Dalsgaard, C. J. & Ringden, O. Stimulation of human B lymphocyte differentiation by the neuropeptides substance P and neurokinin A. Scand. J. Immunol. 30, 695–701 (1989).

    Article  CAS  PubMed  Google Scholar 

  78. Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Karimi, K., Bienenstock, J., Wang, L. & Forsythe, P. The vagus nerve modulates CD4+ T cell activity. Brain Behav. Immun. 24, 316–323 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. McInnes, I. B. & O'Dell, J. R. State-of-the-art: rheumatoid arthritis. Ann. Rheum. Dis. 69, 1898–1906 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Pongratz, G. & Fleck, M. Anti citrullinated protein antibodies and mechanism of action of common disease modifying drugs—insights in pathomechanisms of autoimmunity. Curr. Pharm. Des. 18, 4526–4536 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Chavele, K. M. & Ehrenstein, M. R. Regulatory T-cells in systemic lupus erythematosus and rheumatoid arthritis. FEBS Lett. 585, 3603–3610 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Levine, J. D., Coderre, T. J., Helms, C. & Basbaum, A. I. β2-adrenergic mechanisms in experimental arthritis. Proc. Natl Acad. Sci. USA 85, 4553–4556 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lorton, D., Lubahn, C., Klein, N., Schaller, J. & Bellinger, D. L. Dual role for noradrenergic innervation of lymphoid tissue and arthritic joints in adjuvant-induced arthritis. Brain Behav. Immun. 13, 315–334 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Härle, P., Möbius, D., Carr, D. J., Schölmerich, J. & Straub, R. H. An opposing time-dependent immune-modulating effect of the sympathetic nervous system conferred by altering the cytokine profile in the local lymph nodes and spleen of mice with type II collagen-induced arthritis. Arthritis Rheum. 52, 1305–1313 (2005).

    Article  PubMed  CAS  Google Scholar 

  86. Kohm, A. P., Mozaffarian, A. & Sanders, V. M. B cell receptor- and β2-adrenergic receptor-induced regulation of B7-2 (CD86) expression in B cells. J. Immunol. 168, 6314–6322 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Pongratz, G., Melzer, M. & Straub, R. H. The sympathetic nervous system stimulates anti-inflammatory B cells in collagen-type II-induced arthritis. Ann. Rheum. Dis. 71, 432–439 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Lombardi, M. S. et al. Adjuvant arthritis induces down-regulation of G protein-coupled receptor kinases in the immune system. J. Immunol. 166, 1635–1640 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Lorton, D. et al. Local application of capsaicin into the draining lymph nodes attenuates expression of adjuvant-induced arthritis. Neuroimmunomodulation 7, 115–125 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Uematsu, T., Sakai, A., Ito, H. & Suzuki, H. Intra-articular administration of tachykinin NK receptor antagonists reduces hyperalgesia and cartilage destruction in the inflammatory joint in rats with adjuvant-induced arthritis. Eur. J. Pharmacol. 668, 163–168 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Leroy, V., Mauser, P., Gao, Z. & Peet, N. P. Neurokinin receptor antagonists. Expert Opin. Investig. Drugs 9, 735–746 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Waldburger, J. M., Boyle, D. L., Pavlov, V. A., Tracey, K. J. & Firestein, G. S. Acetylcholine regulation of synoviocyte cytokine expression by the α7 nicotinic receptor. Arthritis Rheum. 58, 3439–3449 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. van Maanen, M. A. et al. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis Rheum. 60, 114–122 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. van Maanen, M. A., Stoof, S. P., LaRosa, G. J., Vervoordeldonk, M. J. & Tak, P. P. Role of the cholinergic nervous system in rheumatoid arthritis: aggravation of arthritis in nicotinic acetylcholine receptor α7 subunit gene knockout mice. Ann. Rheum Dis. 69, 1717–1723 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Westman, M., Saha, S., Morshed, M. & Lampa, J. Lack of acetylcholine nicotine α 7 receptor suppresses development of collagen-induced arthritis and adaptive immunity. Clin. Exp. Immunol. 162, 62–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Straub, R. H. et al. Anti-inflammatory role of sympathetic nerves in chronic intestinal inflammation. Gut 57, 911–921 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Naukkarinen, A., Nickoloff, B. J. & Farber, E. M. Quantification of cutaneous sensory nerves and their substance P content in psoriasis. J. Invest. Dermatol. 92, 126–129 (1989).

    Article  CAS  PubMed  Google Scholar 

  98. Dekkers, J. C., Geenen, R., Godaert, G. L., Bijlsma, J. W. & van Doornen, L. J. Elevated sympathetic nervous system activity in patients with recently diagnosed rheumatoid arthritis with active disease. Clin. Exp. Rheumatol. 22, 63–70 (2004).

    CAS  PubMed  Google Scholar 

  99. Bruno, R. M. et al. Sympathetic regulation of vascular function in health and disease. Front. Physiol. 3, 284–298 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Keyszer, G., Langer, T., Kornhuber, M., Taute, B. & Horneff, G. Neurovascular mechanisms as a possible cause of remission of rheumatoid arthritis in hemiparetic limbs. Ann. Rheum. Dis. 63, 1349–1351 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Over many years, the authors' research has been supported by the University Hospital Regensburg, the Federal Ministry of Education and Research (BMBF) and the German Research Foundation (DFG), in particular their funding of DFG Research Unit FOR696.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to Rainer H. Straub.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pongratz, G., Straub, R. Role of peripheral nerve fibres in acute and chronic inflammation in arthritis. Nat Rev Rheumatol 9, 117–126 (2013). https://doi.org/10.1038/nrrheum.2012.181

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing